1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lukranit [14]
2 years ago
8

A circular disc of mass 20kg and radius 15cm is mounted in an horizontal cylindrical axle of radius

Physics
1 answer:
disa [49]2 years ago
4 0

Using the concepts of energy, rotational Newton's second law and rotational kinematics we can find the kinematic energy of the system formed by the disk and the cylindrical axis

          KE = 0.23 J

given parameters

  • Disk radius R = 15 cm = 0.15 m
  • Cylinder radius r = 1.5 cm = 0.0015 m
  • Disk mass M = 20 kg
  • Time t = 1.2 s
  • Force F = 12 N

to find

  • Kinetic energy (KE)

This exercise must be solved in parts:

1st part. Endowment kinetic energy is the energy due to the circular motion of an object and is described by the equation

         KE = ½ I w²

Where KE is the kinetic energy, I the moment of inertia and w the angular velocity

The moment of inertia is a magnitude that measures the inertia for rotational movement, it is a scalar quantity, therefore it is additive. In this system it is composed of two bodies, the disk and the cylindrical axis, for which the total moment of inertia it is

         I_{ total} = I_{ disk} + I_{ cylinder}

the moments of inertia with respect to an axis passing through the center of mass are tabulated

disk          I_{disk} = ½ M R²

cylinder   I_{cylinder} = ½ m r²

where M and m are the masses of the disk and cylinder respectively, R and r their radii

         I_{total} = ½ (M R² + m r²) = ½ M R² ( 1 + \frac{m}{M} \ (\frac{r}{R})^2 )

         I_{total} = ½ M R² ( 1+ \frac{m}{20}  (\frac{0.015}{0.15} )^2 ) = \frac{1}{2} M R² (1 + 0.005 m)

As the shaft mass  is much lighter than the disk mass , the last term is very small, which is why we despise it.

         I_{total} = ½ M R²

2nd part. Let's use Newton's second law for endowment motion

        τ = I α

        α = \frac{\tau }{I_{total}}l

        τ = F R

        α = \frac{F \ R}{I_{total}}

With the rotational kinematics expressions, we assume that the system starts from rest (w₀ = 0)

        w = w₀ + α  t

where w is the angular velocity, alpha is the angular acceleration and t is the time

        w = 0 + \frac{\tau }{I_{total}} \ t

we substitute in the kinetic energy equation

        KE = ½ I_{total}  ( \frac{ \tau }{I_{total}} \ t )²

        KE = ½ \frac{ \tau^2 }{I_{total}} \ t^2

let's substitute

        KE = \frac{F^2 \ R^4}{M \ R^2 } \ t^2

        KE = F² R² t² / M

let's calculate

        KE = 12² 0.15² 1.2² / 20

        KE = 0.23 J

With the concepts of energy and rotational kinematics we can find the kinetic energy of the system is

       KE = 0.23 j

learn more about rotational kinetic energy here:

brainly.com/question/20261989

You might be interested in
A record player turntable initially rotating at 3313 rev/min is braked to a stop at a constant rotational acceleration. The turn
Lelechka [254]

Answer:

a. 16 s b. -1.866 kJ

Explanation:

a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.

We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².

Since the turntable stops at ω = 0, the time it takes to stop is gotten from

ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.

So it takes the turntable 16 s to stop.

b. The workdone by the turntable to stop W equals its rotational kinetic energy change.

So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ

3 0
3 years ago
two billiard balls moving along the same line hit each other head-on. each has a mass of 0.220 kg; one has an initial velocity o
Tems11 [23]

Hi there!

Since the collision is elastic, we must also satisfy the following condition:

Ei = Ef, or:

KEi = KEf

Begin by writing an expression for momentum. (p = mv) Remember that one ball's direction is negative; in this instance, we can let the second ball be moving LEFT.

mv1 + mv2 = mvf1 + mvf2

0.220(1.84) + 0.220(-.530) = 0.220(vf1 + vf2)

0.2882/0.220 = vf1 + vf2

1.31 = vf1 + vf2

Now, we can express this as a conservation of energy:

1/2mv1² + 1/2mv2² = 1/2mvf1² + 1/2mvf2²

Plug in values and simplify:

0.403315 = 1/2m(vf1² + vf2²)

Simplify further:

3.6665 = vf1² + vf2²

Use the equation derived from momentum above and solve for one variable:

vf2 = 1.31 - vf1

Plug in this expression for vf2:

3.6665 = vf1² + (1.31 - vf1)²

Expand:

3.6665 = vf1² + 1.7161 - 2.62vf1 + vf1²

Simplify:

1.9504 = -2.62vf1 + 2vf1²

Solve for vf1 using a graphing calculator:

vf1 = -0.53 m/s or 1.84 m/s; we must figure out which one is correct.

Since v1 is heading to the right initially with a velocity of 1.84 m/s, we know that the ball's velocity could not have stayed the same in both magnitude and direction, so the final velocity must be -0.53 m/s.

Now, we can solve for the velocity of the other ball (initial of 0.53 m/s):

vf2 = 1.31 - (-0.53) = 1.84 m/s.

Now, you could have also made the connection that when two balls of the SAME MASS experience an ELASTIC collision, the velocities are simply "exchanged" from one to another. I just used this more "extensive" method to prove this.

7 0
3 years ago
How is kinetic energy of an object determined?
pentagon [3]

The formula for kinetic energy is

                     KE = (1/2) (mass) (speed)² .

How you measure the object's mass and speed is up to you.
You'd need different methods for different objects, and in some
cases, you'd need quite a bit of ingenuity.

6 0
3 years ago
You're collecting data in BeyondLabz for an object in free fall, subject to air resistance. How do you know when you've collecte
denis23 [38]

Enough data points would have been collected when specific data for upward and downward motion are collected.

<h3>What is a Data point?</h3>

A data point is a discrete unit of information. This information is always unique.

<h3>Free fall</h3>

An object subjected to free fall is under the influence of gravity. An object subjected has different time of motion for upward and downward motion.

Thus, we can conclude that enough data points would have been collected when specific data for upward and downward motion are collected.

Learn more about free fall here: brainly.com/question/10909077

6 0
2 years ago
A complex sound’s quality depends on the mix of harmonics or overtones added to the ______________ frequency
Brilliant_brown [7]
Fundamental frequency is the "base frequency" upon which the sound is built.
4 0
3 years ago
Other questions:
  • The first modern atomic scientist was:
    6·2 answers
  • True or false A physical change occurs when matter changes state as from a liquid to a gas Becuase
    13·2 answers
  • A football coach starts at the 50-yard line (a) and walks to the 10-yard line (b) he turns around and walks to the 40-yard line
    9·1 answer
  • Students are given some resistors with various resistances a battery with internal resistance
    5·2 answers
  • Which of the following statements is a consequence of the equation, E = mc2
    13·1 answer
  • Two children sit on different sides of a seesaw. The first child of mass 27 kg sits 1.5 m from the center. How far must the seco
    13·1 answer
  • Observer A, who is at rest in the laboratory, is studying a particle that is moving through the laboratory at a speed of v=0.8c
    15·1 answer
  • SOME HELP ME WITH MY QUIZ
    10·1 answer
  • Susie rolls a bowling ball down the alley and knocks over most of the pins. Explain why fewer pins were knocked over when her li
    9·1 answer
  • What is the difference between real and apparent weightlessness?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!