Answer:
420J
Explanation:
Power is the time rate of change in energy. Power is the ratio of energy to time. The S.I unit of power is in watts.
Given that the flash lasts for 1/675 s, power output is 2.7 * 10⁵ W. Hence:
Power = Energy / time
Substituting:
2.7 * 10⁵ W = Energy / (1/675)
Energy = 2.7 * 10⁵ W * 1/675 = 400J
Therefore the energy emitted as light is 400J.
Since the conversion of electric energy to light is 95% efficient, hence the energy stored as electrical energy is:
Energy(capacitor) = 5% of 400J + 400J = 0.05*400 + 400
Energy(capacitor) = 420J
The Electromagnetic and Visible Spectra. I believe..
Answer:
<h2> r=mv/Be</h2>
Explanation:
If a positive charge enters a magnetic field at 90 degrees the charge is deflected in a circular path by a force that acts perpendicular to it in line with Flemings right-hand rule
to derive the radius of the path of the charge we apply
F= mv^2/r=Bev
where
m= mass of the electronic charge
e=charge
B=magnetic field
v=average speed
r=radius
rearranging we have
r=mv^2/Bev
r=mv/Be
Answer: The following statement is true about squall line thunderstorm development: <em><u>These often form ahead of the advancing front but rarely behind it because lifting of warm, humid air and the generation of a squall line usually occur in the warm sector ahead of an advancing cold front. Behind a cold front, the air motions are usually downward, and the air is cooler and drier.</u></em>
<em>An upper-level wave, accountable for the fabrication of a squall line, extend in front of and backside a cold front, the air backside the front is cold, steady and settling while the air ahead of the front is hot and co-seismic.</em>
Answer:
The wavelength of the light is 562.5 nm
Solution:
As per the question:
Order, n = 1
Slit separation, d = 
Distance from the bright fringe, y = 0.18 m
Distance between the screen and the grating, D = 0.8 m
Now,
We know from the eqn for diffraction:

n = 1
(1)
Also,
For very small angle,
:
≈ 
Using the above value in eqn (1):
