Answer:
The terminal velocity of the diver is 115 m/s = 414 km/hr
Explanation:
At terminal velocity,
Fnet = mg - Fd = 0
Drag force, Fd = cρAv²/2
mg = cρAv²/2
Terminal Velocity of a body falling through a fluid as in a diver falling through air is given by
v = √(2mg/ρcA)
where m = mass of body falling through fluid = 80 kg
g = acceleration due to gravity = 9.8 m/s²
ρ = density fluid, density of air, as obtained from literature = 1.21 kg/m³
c = coefficient of drag friction of diver falling through air, as obtained from literature = 0.7
A = the area of the diver facing the fluid = 0.14 m²
v = √(2mg/ρcA) = √((2 × 80 × 9.8)/(1.21 × 0.7 × 0.14)) = 115 m/s = 115 × (3600/1000) km/hr = 414 km/hr
Answer: How to solve for FX and FY?
to find fx(x, y): keeping y constant, take x derivative; • to find fy(x, y): keeping x constant, take y derivative. f(x1,...,xi−1,xi + h, xi+1,...,xn) − f(x) h . ∂y2 (x, y) ≡ ∂ ∂y ( ∂f ∂y ) ≡ (fy)y ≡ f22. similar notation for functions with > 2 variables.
Explanation:
The answer would be:
Precipitation sometimes occurs when the horizontal winds move air against mountain ranges, forcing air to rise as it passes over the mountains.
This happens when the air is forced to move from low elevation to high elevation due to rising terrain. This causes the air to cool adiabatically. This increases the relative humidity and causes clouds to form, under certain conditions it can also create precipitation.
Answer: I think Its the Height is 11.76 Meters (38.582677 Feet) between the bridge and the ground
Explanation: Supposing that where not counting air resistance in the equation, the equation
states that 1/2 multiplied by earths gravitational acceleration multiplied by the amount of time to reach the bottom: 2.4 seconds equals 11.76 meters of height between the bridge and the ground.
A scientific law is the simple mathematical expression of the relationship involved. A principle is the same relationship expressed in words. A theory is the explanation of the facts that make up the relationship.