Answer:
I think A golf ball shot out of a small cannon
Explanation:
The spring is initially stretched, and the mass released from rest (v=0). The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.100 s. This corresponds to half oscillation of the system. Therefore, the period of a full oscillation of the system is

Which means that the frequency is

and the angular frequency is

In a spring-mass system, the maximum velocity of the object is given by

where A is the amplitude of the oscillation. In our problem, the amplitude of the motion corresponds to the initial displacement of the object (A=0.500 m), therefore the maximum velocity is
Answer:

Explanation:
For the cat to stay in place on the merry go round without sliding the magnitude of maximum static friction must be equal to magnitude of centripetal force

Where the r is the radius of merry-go-round and v is the tangential speed
but

So we have

Substitute the given values
So

This happens in basketball. It is known as "jump ball".
Answer:
According to the Conservation of Momentum,
Momentum of the gun = momentum of the bullet
M(gun)×V(gun)=m(bullet)×v(bullet)
4kg × V = 0.3kg × 600m/s²
V = (0.3 × 600)/4 = 45 m/s
The recoil velocity on the gun is <em><u>45 m/s</u></em>
<h3><u>45 m/s</u> is the right answer.</h3>