Answer:
Δω = -5.4 rad/s
αav = -3.6 rad/s²
Explanation:
<u>Given</u>:
Initial angular velocity = ωi = 2.70 rad/s
Final angular velocity = ωf = -2.70 rad/s (negative sign is
due to the movement in opposite direction)
Change in time period = Δt = 1.50 s
<u>Required</u>:
Change in angular velocity = Δω = ?
Average angular acceleration = αav = ?
<u>Solution</u>:
<u>Angular velocity (Δω):</u>
Δω = ωf - ωi
Δω = -2.70 - 2.70
Δω = -5.4 rad/s.
<u> Average angular acceleration (αav):</u>
αav = Δω/Δt
αav = -5.4/1.50
αav = -3.6 rad/s²
Since, the angular velocity is decreasing from 2.70 rad/s (in counter clockwise direction) to rest and then to -2.70 rad/s (in clockwise direction) so, the change in angular velocity is negative.
Answer:0.502kg
Explanation:
F4om the relation
Power x time = mass x latent heat of vapourization
P.t=ML
1260 * 15 *60 = M * 22.6 * 10^5
M= 1134000/(22.6 *10^5)
M=0.502kg=502g
I'll tell you how I look at this, although I may be missing something important.
Position = x(t) = 0.5 sin(pt + p/3)
Speed = position' = x'(t) = 0.5 p cos(pt + p/3)
Acceleration = speed' = position ' ' = x ' '(t) = -0.5 p² sin(pt + p/3)
At (t = 1.0),
x ' '(t) = -0.5 p² sin( 4/3 p )
In order to evaluate this, don't I still have to know what 'p' is ? ?
I don't think it can be evaluated with the information given in the question.
The apparent weight of a 1.1 g drop of water is 4.24084 N.
<h3>
What is Apparent Weight?</h3>
- According to physics, an object's perceived weight is a characteristic that describes how heavy it is. When the force of gravity acting on an object is not counterbalanced by a force of equal but opposite normality, the apparent weight of the object will differ from the actual weight of the thing.
- By definition, an object's weight is equal to the strength of the gravitational force pulling on it. It follows that even a "weightless" astronaut in low Earth orbit, with an apparent weight of zero, has almost the same weight that he would have if he were standing on the ground; this is because the gravitational pull of low Earth orbit and the ground are nearly equal.
Solution:
N = Speed of rotation = 1250 rpm
D = Diameter = 45 cm
r = Radius = 22.5 cm
M = Mass of drop = 1.1 g
Angular speed of the water = 


Apparent weight is given by


= 4.24084 N
Know more about Apparent weight brainly.com/question/14323035
#SPJ4
Question:
The spin cycle of a clothes washer extracts the water in clothing by greatly increasing the water's apparent weight so that it is efficiently squeezed through the clothes and out the holes in the drum. In a top loader's spin cycle, the 45-cm-diameter drum spins at 1250 rpm around a vertical axis. What is the apparent weight of a 1.1 g drop of water?