Answer: 500 N
Explanation:
The formula to find the force exerted by a mass, we may use F = mg, where g, the gravity, and a, the acceleration, can be interchangeable in the formula.
1) F = 50 x 10
2) F = 500 N
Hope this helps, brainliest would be appreciated :)
41.5 is the answer that i got. hope this helps!
Answer:
The store energy in the inductor is 0.088 J
Explanation:
Given that,
Inductor = 100 mH
Resistance = 6.0 Ω
Voltage = 12 V
Internal resistance = 3.0 Ω
We need to calculate the current
Using ohm's law


Put the value into the formula


We need to calculate the store energy in the inductor



Hence, The store energy in the inductor is 0.088 J
To solve this problem, let us recall that the formula for
gases assuming ideal behaviour is given as:
rms = sqrt (3 R T / M)
where
R = gas constant = 8.314 Pa m^3 / mol K
T = temperature
M = molar mass
Now we get the ratios of rms of Argon (1) to hydrogen (2):
rms1 / rms2 = sqrt (3 R T1 / M1) / sqrt (3 R T2 / M2)
or
rms1 / rms2 = sqrt ((T1 / M1) / (T2 / M2))
rms1 / rms2 = sqrt (T1 M2 / T2 M1)
Since T1 = 4 T2
rms1 / rms2 = sqrt (4 T2 M2 / T2 M1)
rms1 / rms2 = sqrt (4 M2 / M1)
and M2 = 2 while M1 = 40
rms1 / rms2 = sqrt (4 * 2 / 40)
rms1 / rms2 = 0.447
Therefore the ratio of rms is:
<span>rms_Argon / rms_Hydrogen = 0.45</span>