Answer:
Explanation:
The oxidation reduction reactions are called redox reaction. These reactions are take place by gaining or losing the electrons and oxidation state of elements are changed.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
Na₂CO₃ + H₃PO₄ → Na₂HPO₄ + CO₂ + H₂O
The oxidation state of carbon on reactant side is +4. while on product side is also +4 so it neither oxidized nor reduced.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized
<span>Mass number is the number of protons and neutrons in an atom, and it tells us about the mass of the atom in amu, or atomic mass units. Atomic mass is the average mass of all the isotopes of a certain type.</span>
<span>Mass number found on the periodic table</span>
Li(s) (answer A)
Li is strongest reducing agent because of the lowest standard reduction potential. when something is oxidized, it reduces another substance, becoming a reducing.Hence Lithium is strongest reducing agent. Reducing agent is stronger when it has a more positive oxidation potential.
Answer: The new pressure of the gas in Pa is 388462
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas at STP = 
= final pressure of gas = ?
= initial volume of gas = 700.0 ml
= final volume of gas = 200.0 ml
= initial temperature of gas = 273 K
= final temperature of gas = 
Now put all the given values in the above equation, we get:


The new pressure of the gas in Pa is 388462
2NaCN(s) + H₂SO₄(aq) --> Na₂SO₄(aq) + 2HCN(g)
The molar ratio between NaCN : HCN is 2:2 or 1:1
Mass of HCN = 16.7 g
Molar mass of HCN = 1 + 12 + 14 = 27 g/mol
Molar mass of NaCN = 49 g/mol
Therefore, the mass of NaCN is
16.7 g of HCN x 49 g/mol of NaCN / 27 g/mol of HCN = 30.3 grams of NaCN
Therefore, 30.3 grams of NaCN gives the lethal dose in the room.