Given:
Diprotic weak acid H2A:
Ka1 = 3.2 x 10^-6
Ka2 = 6.1 x 10^-9.
Concentration = 0.0650 m
Balanced chemical equation:
H2A ===> 2H+ + A2-
0.0650 0 0
-x 2x x
------------------------------
0.065 - x 2x x
ka1 = 3.2 x 10^-6 = [2x]^2 * [x] / (0.065 - x)
solve for x and determine the concentration at equilibrium.
Answer:
Kp = 0.049
Explanation:
The equilibrium in question is;
2 SO₂ (g) + O₂ (g) ⇄ 2 SO₃ (g)
Kp = p SO₃² / ( p SO₂² x p O₂ )
The initial pressures are given, so lets set up the ICE table for the equilibrium:
atm SO₂ O₂ SO₃
I 3.3 0.79 0
C -2x -x 2x
E 3.3 - 2x 0.79 - x 2x
We are told 2x = partial pressure of SO₃ is 0.47 atm at equilibrium, so we can determine the partial pressures of SO₂ and O₂ as follows:
p SO₂ = 3.3 -0.47 atm = 2.83 atm
p O₂ = 0.79 - (0.47/2) atm = .56 atm
Now we can calculate Kp:
Kp = 0.47² /[ ( 2.83 )² x 0.56 ] = 0.049 ( rounded to 2 significant figures )
Note that we have extra data in this problem we did not need since once we setup the ICE table for the equilibrium we realize we have all the information needed to solve the question.
5.00 x 1011/s = 5.05500kilohertz
When oxygen is found is peroxide, it has an oxidation number of -1.
The chemical formula of hydrogen peroxide is H2O2. We know that hydrogen always has +1 oxidation state until it forms metal hydrides. So in H2O2, the oxidation state ofhydrogen is +1.
Now, let oxidation state of oxygen be x. So,
2 * (+1) + 2*x = 0
2 + 2x = 0
2x = -2
x = -2 / 2
x = -1
Hence, the oxidation number of oxygen in peroxides is -1
D. Wind will always move from areas of high pressure to low pressure. It's the reason we have weather, or one of them. Temperature is another factor.
B. That is the definition of the greenhouse effect.