In a gear train with two gears, the gear ratio is defined as follows
where

is the angular velocity of the input gear while

is the angular velocity of the output gear.
This can be rewritten as a function of the number of teeth of the gears. In fact, the angular velocity of a gear is inversely proportional to the radius r of the gear:

But the radius is proportional to the number of teeth N of the gear. Therefore we can rewrite the gear ratio also as
To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final height
is the bomb's initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's final velocity
Knowing this, let's begin with the answers:
<h3>b) Time
</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity
</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign only indicates the direction is downwards
<h3>c) Range
</h3>
Substituting (7) in (2):
(11)
(12)
Explanation:
Let us first calculate long does it take to go 12m at 30m/s( assumed speed)
12/30 = 0.4 seconds
horizontal distance the ball drop in that time
H= (0)(0.4)+1/2(-9.8)(0.4)2
H= -0.78m
negative sign shows that the height of the ball at the net from the top.
Height of the ball at the net and from the ground= H1-H=2.4-0.78=1.62m
As 1.62m>0.9m so the ball will clear the net.
H_1= V0y t’ + ½ g t’^2
-2.4= (0)t’ + ½ (-9.8) t’^2
t’= 0.69s
X’=V0x t’
X’=(30)(0.96)
X’= 20.7m
Answer:
1.549 m
Explanation:
Given:
The radius of the circular board, r = 2 m
The probability of hitting the red is given as 0.6
Now, this probability of hitting the red can be conclude as
0.6 = (Area of red)/ (Total area of the board)
Total area of the board = πr² = π × 2²
let the radius of the red area be R
thus, area of red circle, = πR²
on substituting the value of the area, we have
0.6 = (πR²)/ (π × 2²)
or
R² = 2.4
or
R = 1.549 m
Thus, the radius of the red circle is 1.549 m