This assumes that the wave has velocity c (is light).
Answer: C. the rod gains mass and the fur loses mass.
Explanation:Atomic particles have mass. The electron has a mass that is approximately 1/1836 that of the proton and with exchange exchange of charge this is also factored in. The movement of effect described above is known as the triboelectic charging process—charging by friction—which results in a transfer of electrons between the two objects when they are rubbed together. Plastic having a much greater affinity for electrons than animal fur pulls electrons from the atoms of fur, leaving both objects with an imbalance of charge. The plastic rod would have an excess of electrons and the fur has a shortage of electrons. Having an excess of electrons, the plastic is charged negatively and has more mass. In the same vein, the shortage of electrons on the fur leaves it with a positive charge and consequently with lesser mass.
The correct answer for the question that is being presented above is this one: "a. Constructive interference." The kind of process that can create "rogue" waves is constructive interference. Constructive interference refers to <span>the </span>interference<span> of two or more waves of equal frequency and phase creating a mutual one.</span>
Vas happenin!
The third one makes no since because the clouds carry the rain. It isn’t always cold when it’s going to rain
The fourth one is a good one
The second one again it’s not always cold when it’s raining
The first one could be it also
Hmmm I would go with the last one
Sorry if it’s wrong
The total amount of energy stays the same, but throughout the ride, the kinetic energy and the potential energy change, still adding up to the same number. At the top of the ride it has potential energy, and as it goes down the potential energy decreases and the kinetic energy increases. When it’s at the bottom of the first drop it has maxed out its kinetic energy, and minimized its potential energy. Friction slows down the car, and pushes on the cart with a force that is equal and opposite to the force being exerted in the track. The reason the track keeps going is because though it exerts and equal and opposite force the momentum of the objects is different, allowing the car to continue moving, however friction will slow it down until eventually it comes to a stop.