Put the object or material on a scale to figure out<span> its mass. 3. Divide the mass by the volume to </span>figure out the density<span> (p = m / v). You may also need to know </span>how to calculate<span> the volume of a </span>solid s<span>o use the formula</span>
New Moon
Waxing Crescent
First Quarter
<span>Waxing Gibbous
</span>Full Moon
<span>Waning Gibbous
</span>Last Quarter
Waning Crescent
;)
Consider the upward direction of motion as positive and downward direction of motion as negative.
a = acceleration due to gravity in downward direction = - 9.8 
v₀ = initial velocity of rock in upward direction = ?
v = final velocity of rock at the highest point = 0 
t = time to reach the maximum height = 4.2 sec
Using the kinematics equation
v = v₀ + a t
inserting the values
0 = v₀ + (- 9.8) (4.2)
v₀ = 41.2 
Answer:
Mercury and Venus lie closer to Sun than position of Earth
Explanation:
As we know that all planets around the sun in the range of their distance can be arranged as following:
1). Mercury.
2). Venus.
3). Earth.
4). Mars.
5). Jupiter.
6). Saturn.
7). Uranus.
8). Neptune.
Since Earth lie at 3rd position from sun so two closer planets are Mercury and Venus
Answer:
13.33 seconds
Explanation:
At maximum height, the equation of motion becomes:
<em> v = u + at</em>
Since the object was thrown vertically, the initial velocity (u) is zero and the acceleration (a) becomes the acceleration due to gravity (10 m/s2). The equation becomes:
<em>v = at</em>
<em>v = 480 k</em>m/hr = 133.333 m/s
10t = 133.333
t = 133.333/10
t = 13.33 seconds.
<em>The time for the ball thrown vertically with a velocity of 480 km/hr to reach the maximum height is </em><em>13.33 seconds</em><em>.</em>