Answer: Activation energy
Explanation:
In a chemical reaction, the reactants contains particles which must collide in order for a reaction to occur. The rate of reaction depends on the frequency of effective collision between the reacting particles. Effective collision are those that result in reactions, which when they occur the colliding particles become activated with increased kinetic energy.
This energy must exceed a particular energy barrier for a particular reaction if the reaction must take place. This energy barrier that must be overcome before a reaction takes place is known as the ACTIVATION ENERGY.
To explain further, when two particles or molecules A and B come in contact with each other, for a reaction to take place, they must collide with a sufficient force to break the bond that exists between them. The minimum combined kinetic energy these reactant particles must possess in order for their collision to result in a reaction is called the activation energy.
1 mountains
2 small volcanoes
3 I'm pretty sure its faults
C because I’m space there’s no gravity meaning things are weightless
Answer: Option (B) is the correct answer.
Explanation:
Molar mass is defined as the sum of masses of all the atoms present in a compound.
For example, atomic mass of barium is 137.32 g/mol and atomic mass of bromine is 79.90 g/mol.
Therefore, molar mass of
will be as follows.
Molar mass = atomic mass of Ba +
= 137.32 g/mol + 
= 297.12 g/mol
Hence, we can conclude that molar mass of [tex]BaBr_{2}[tex] is 297.12 g/mol.
The given question is incomplete. The complete question is:
Calculate the number of moles and the mass of the solute in each of the following solution: 100.0 mL of 3.8 × 10−5 M NaCN, the minimum lethal concentration of sodium cyanide in blood serum
Answer: The number of moles and the mass of the solute are
and
respectively
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml


n = moles of
= 


Thus the number of moles and the mass of the solute are
and
respectively