Answer:
The branch of physics that is most relevant to football is mechanics, the study of motion and its causes.
Explanation:
When the ball leaves the punter's foot, it is moving with a given velocity (speed plus angle of direction) depending upon the force with which he kicks the ball. The ball moves in two directions, horizontally and vertically. Because the ball was launched at an angle, the velocity is divided into two pieces: a horizontal component and a vertical component.
True, They contain old stars and posses little gas or dust
Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
Elastic potential energy is equal to the force times the distance of movement. Elastic potential energy = force x distance of displacement. Because the force is = spring constant x displacement, then the Elastic potential energy = spring constant x displacement squared.
Acceleration = Change in Velocity / time
a = (v - u) / t
Where v = final velocity in m/s
u = initial velocity in m/s
t = time in seconds.
a = acceleration in m/s²
A proper record of the changes in velocity with the corresponding time would help find the acceleration.