<span>Separate this redox reaction into its component half-reactions.
Cl2 + 2Na ----> 2NaCl
reduction: Cl2 + 2 e- ----> 2Cl-1
oxidation: 2Na ----> 2Na+ & 2 e-
2) Write a balanced overall reaction from these unbalanced half-reactions:
oxidation: Sn ----> Sn^2+ & 2 e-
reduction: 2Ag^+ & 2e- ----> 2Ag
giving us
2Ag^+ & Sn ----> Sn^2+ & 2Ag </span>Steve O <span>· 5 years ago </span><span>
</span>
Let's note that 1 pint = 473.1765 mL, so 11 pints should be 5204.9415 mL.
We make a proportion out of the word problem
(85 mg glucose/ 100 mL) times (1 g/ 1000 mg) = 4.4242 grams of glucose
Answer:
Unidentified flying object or fly saucer.
Explanation:
Answer:
A) E° = 4.40 V
B) ΔG° = -8.49 × 10⁵ J
Explanation:
Let's consider the following redox reaction.
2 Li(s) +Cl₂(g) → 2 Li⁺(aq) + 2 Cl⁻(aq)
We can write the corresponding half-reactions.
Cathode (reduction): Cl₂(g) + 2 e⁻ → 2 Cl⁻(aq) E°red = 1.36 V
Anode (oxidation): 2 Li(s) → 2 Li⁺(aq) + 2 e⁻ E°red = -3.04
<em>A) Calculate the cell potential of this reaction under standard reaction conditions.</em>
The standard cell potential (E°) is the difference between the reduction potential of the cathode and the reduction potential of the anode.
E° = E°red, cat - E°red, an = 1.36 V - (-3.04 V) 4.40 V
<em>B) Calculate the free energy ΔG° of the reaction.</em>
We can calculate Gibbs free energy (ΔG°) using the following expression.
ΔG° = -n.F.E°
where,
n are the moles of electrons transferred
F is Faraday's constant
ΔG° = - 2 mol × (96468 J/V.mol) × 4.40 V = -8.49 × 10⁵ J
18. a) The materials that are in contact. The two materials and the nature of their surfaces. ...
b) The force pushing the two surfaces together. Pushing the surfaces together causes the more of the asperities to come together and increases the surface area in contact with each other.
19. the quantity of motion of a moving body, measured as a product of its mass and velocity.
20. According to Newton's third law of motion, action force is equal to reaction but acts on two different bodies and in opposite directions. When a horse pushes the ground, the ground reacts and exerts a force on the horse in the forward direction. This force is able to overcome friction force of the cart and it moves.
21. The mass of an object is a measure of the object's inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s2.
22. R12. Mass is more fundamental because it is an intrinsic property of an object. Weight varies with location depending upon the acceleration due to gravity eg. for a mass m = 10kg on Earth it`s weight is W = mg = 10 x 10 = 100N.