The formula for the acceleration due to gravity is:
a = Gm/r²
where
G is the universal gravitational constant = 6.6726 x 10⁻¹¹ N-m²/kg²
m is the mass of planet
r is the radius of planet
So, if they have the same a:
m₁/r₁² = m₂/r₂²
So, if m₁ = m and r₂ = 2r₁,
m/r₁² = m₂/(2r₁)²
m₂ = 4m
<em>Thus, the answer is D.</em>
Explanation:
<em>The height of the pendulum is measured from the lowest point it reaches (point 3). </em>
At 1, the kinetic energy of the pendulum is zero (because it is not moving), and it has maximum potential energy.
At 2, the pendulum has both kinetic and potential energy, and how much of each it has depends on its height—smaller the height greater the kinetic energy and lower the potential energy.
At 3, the height is zero; therefore, the pendulum has no potential energy, and has maximum kinetic energy.
At 4, the pendulum again gains potential energy as it climbs back up, Again how much of each forms of energy it has depends on its height.
At 5, the maximum height is reached again; therefore, the pendulum has maximum potential energy and no kinetic energy.
Hope this helps :)
Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
Answer:
a. λ = 647.2 nm
b. I₀ 9.36 x 10⁻⁵
Explanation:
Given:
β = 56.0 rad , θ = 3.09 ° , γ = 0.170 mm = 0.170 x 10⁻³ m
a.
The wavelength of the radiation can be find using
β = 2 π / γ * sin θ
λ = [ 2π * γ * sin θ ] / β
λ = [ 2π * 0.107 x 10⁻³m * sin (3.09°) ] / 56.0 rad
λ = 647.14 x 10⁻⁹ m ⇒ λ = 647.2 nm
b.
The intensity of the central maximum I₀
I = I₀ (4 / β² ) * sin ( β / 2)²
I = I₀ (4 / 56.0²) * [ sin (56.0 /2) ]²
I = I₀ 9.36 x 10⁻⁵