1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
2 years ago
10

Which theory of emotion explains the startle response

Physics
1 answer:
Mashcka [7]2 years ago
3 0

Answer:

In the present study, the startle blink reflex is used as a measure of emotion regulation to effective picture stimuli. Based on the aphasic theory of emotion, it is hypothesized that the startle response will be largest in magnitude in the presence of negative emotional stimuli (Varanasi, Spence, & Lang, 1988).

You might be interested in
PLS ANSWER ASAP
TiliK225 [7]

Answer: Answer is D

I took the test little while back.

3 0
3 years ago
Name 3 renewable energy resources
Ad libitum [116K]
Solar energy, wind energy, hydro energy
7 0
3 years ago
Read 2 more answers
Sarah launches her purse straight up in air with a velocity of 30.2m/s<br> How high will it go?
yaroslaw [1]

Answer: 46.53

Explanation:

6 0
3 years ago
A horizontal line above the time axis of a speed vs. time graph means an object is ___.
miv72 [106K]
A horizontal line on a speed/time graph means a constant speed.
6 0
4 years ago
A 25.0 kg box of textbooks rests on a loading ramp that makes an angle α with the horizontal. The coefficient of kinetic frictio
Alekssandra [29.7K]

Answer:

The minimum angle at which the box starts to slip (rounded to the next whole number) is α=19°

Explanation:

In order to solve this problem we must start by drawing a sketch of the problem and its corresponding fre body diagram (See picture attached).

So, when we are talking about friction, there are two types of friction coefficients. Static and kinetic. Static friction happens when the box is not moving no matter what force you apply to it. You get to a certain force that is greater than the static friction and the box starts moving, it is then when the kinetic friction comes into play (kinetic friction is generally smaller than static friction). So in order to solve this problem, we must find an angle such that the static friction is the same as the force applie by gravity on the box. For it to be easier to analyze, we must incline the axis of coordinates, just as shown on the picture attached.

After doing an analysis of the free-body diagram, we can build our set of equations by using Newton's thrid law:

\sum F_{x}=0

we can see there are only two forces in x, which are the weight on x and the static friction, so:

-W_{x}+f_{s}=0

when solving for the static friction we get:

f_{s}=W_{x}

We know the weight is found by multiplying the mass by the acceleration of gravity, so:

W=mg

and:

W_{x}=mg sin \alpha

we can substitute this on our sum of forces equation:

f_{s}=mg sin \alpha

the static friction will depend on the normal force applied by the plane on the box, static friction is found by using the following equation:

f_{s}=N\mu_{s}

so we can substitute this on our equation:

N\mu_{s}=mg sin \alpha

but we don't know what the normal force is, so we need to find it by doing a sum of forces in y.

\sum F_{y}=0

In the y direction we got two forces as well, the normal force and the force due to gravity, so we get:

N-W_{y}=0

when solving for N we get:

N=W_{y}

When seeing the free-body diagram we can determine that:

W_{y}=mg cos \alpha

so we can substitute that in the sum of y-forces equation, so we get:

N=mg cos \alpha

we can go ahead and substitute this equation in the sum of forces in x equation so we get:

mg cos \alpha \mu_{s}=mg sin \alpha

we can divide both sides of the equation into mg so we get:

cos \alpha \mu_{s}=sin \alpha

as you may see, the angle doesn't depend on the mass of the box, only on the static coefficient of friction. When solving for \mu_{s} we get:

\mu_{s}=\frac{sin \alpha}{cos \alpha}

when simplifying this we get that:

\mu_{s}=tan \alpha

now we can solve for the angle so we get:

\alpha= tan^{-1}(\mu_{s})

and we can substitute the given value so we get:

\alpha= tan^{-1}(0.350)

which yields:

α=19.29°

which rounds to:

α=19°

8 0
3 years ago
Other questions:
  • Heat is distributed through the atmosphere by winds<br> True<br><br> False
    9·1 answer
  • The soccer field is _____.
    13·2 answers
  • Two wooden boxes of equal mass but different density are held beneath the surface of a large container of water. Box A has a sma
    15·1 answer
  • Reeti has a mass of 51.0 kg. The Gravitron, a ride that spins so fast that the floor can be removed without the riders falling,
    13·1 answer
  • Write examples of adaptation in mangrove .? <br>what are the adaptation of rainforest.?​
    8·1 answer
  • When the plutonium bomb was tested in New Mexico in 1945, approximately 1 gram of matter was converted into energy. Suppose anot
    14·1 answer
  • Tarzan, whose mass is 94 kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets g
    15·1 answer
  • Consult Multiple-Concept Example 11 for background material relating to this problem. A small rubber wheel on the shaft of a bic
    7·1 answer
  • A toy helicopter has a mass of .25 kg. The rotors of the helicopter exert an upward lift
    12·1 answer
  • I need help 8th grade science test review will give brainest
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!