Answer: The molar enthalpy change is 73.04 kJ/mol
Explanation:

moles of HCl= 
As NaOH is in excess 0.0415 moles of HCl reacts with 0.0415 moles of NaOH.
volume of water = 100.0 ml + 50.0 ml = 150.0 ml
density of water = 1.0 g/ml
mass of water = 

q = heat released
m = mass = 150.0 g
c = specific heat = 
= change in temperature = 


Thus 0.0415 mol of HCl produces heat = 3031.3 J
1 mol of HCL produces heat = 
Thus molar enthalpy change is 73.04 kJ/mol
First find the number of moles of sulfur using dimensional analysis with avogadro’s number as the conversion factor. 4.2*10^24 atoms * (1 mol/6.022*10^23 atoms) = 7.0 mol sulfur. The molar mass of sulfur is 32.06 g/mol, which is found on the periodic table as sulfur’s (S) atomic weight. Use dimensional analysis again with the molar mass of sulfur as the conversion factor. 7.0 mol * 32.06 g/mol = 224.42 g sulfur. Since the problems gives us two significant figures, round the mass of sulfur to 220 grams, or 2.2 * 10^2 g.
-NH2 is the most favorable for the reaction
Answer:
D. 0.160
Explanation:
The solution A is obtained adding 2.0mL of a solution of bromocresol green, 5.0mL of 1.60M HAc and 2.0mL of a solution of KCl. The solution is diluted to 50mL
That means the HAc is diluted from 5.0mL to 50.0mL, that is:
50.0mL / 5.0mL = 10 times.
And the final concentration of HAc must be:
1.60M / 10 times =
0.160M
Right answer is:
<h3>D. 0.160</h3>