There are 3 forces acting on the stoplight:
• its weight <em>W</em>, with magnitude <em>W</em> = 100 N, pointing directly downward
• two tension forces <em>T</em>₁ and <em>T</em>₂ with equal magnitude <em>T</em>₁ = <em>T</em>₂ = <em>T</em> = 1000 N, both making an angle of <em>θ</em> with the horizontal, but one points left and the other points right
The stoplight is in equilibrium, so by Newton's second law, the net vertical force acting on it is 0, such that
∑ <em>F</em> = <em>T</em>₁ sin(<em>θ</em>) + <em>T</em>₂ sin(180° - <em>θ</em>) - <em>W</em> = 0
We have sin(180° - <em>θ</em>) = sin(<em>θ</em>) for all <em>θ</em>, so the above reduces to
2<em>T</em> sin(<em>θ</em>) = <em>W</em>
2 (1000 N) sin(<em>θ</em>) = 100 N
sin(<em>θ</em>) = 0.05
<em>θ</em> ≈ 2.87°
If <em>y</em> is the vertical distance between the stoplight and the ground, then
tan(<em>θ</em>) = (15 m - <em>y</em>) / (100 m)
Solve for <em>y</em> :
tan(2.87°) = (15 m - <em>y</em>) / (100 m)
<em>y</em> = 15 m - (100 m) tan(2.87°)
<em>y</em> ≈ 9.99 m