Because gravity and it's force pushes an object down
Answer:
B, B (decreases, a clockwise)
Explanation:
Finally, the switch on the electromagnet is reopened. The magnitude of the external magnetic flux through the wire loop <u>decreases</u>, and there is <u>a clockwise</u>, current induced in the loop (as seen from the left).
Answer:
Her angular speed (in rev/s) when her arms and one leg open outward is 1.4 rev/s
Explanation:
given information:
moment inertia of arm and leg when in, I₁ = 0.9 kgm²
moment inertia of arm and leg when extended, I₂ = 2.9 kgm²
angular speed when in, ω₁ = 4.5 rev/s
so, her angular speed (in rev/s) when her arms and one leg open outward is
L₁ = L₂
I₁ω₁ = I₂ω₂
ω₂ = I₁ω₁/I₂
= 0.9 x 4.5/2,9
= 1.4 rev/s
Answer:
Kg.m/s is the unit for impulse
Explanation:
If i were wrong please correct me.
Answer:
3.4 x 10⁴ m/s
Explanation:
Consider the circular motion of the electron
B = magnetic field = 80 x 10⁻⁶ T
m = mass of electron = 9.1 x 10⁻³¹ kg
v = radial speed
r = radius of circular path = 2 mm = 0.002 m
q = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
For the circular motion of electron
qBr = mv
(1.6 x 10⁻¹⁹) (80 x 10⁻⁶) (0.002) = (9.1 x 10⁻³¹) v
v = 2.8 x 10⁴ m/s
Consider the linear motion of the electron :
v' = linear speed
x = horizontal distance traveled = 9 mm = 0.009 m
t = time taken =
=
= 4.5 x 10⁻⁷ sec
using the equation
x = v' t
0.009 = v' (4.5 x 10⁻⁷)
v' = 20000 m/s
v' = 2 x 10⁴ m/s
Speed is given as
V = sqrt(v² + v'²)
V = sqrt((2.8 x 10⁴)² + (2 x 10⁴)²)
v = 3.4 x 10⁴ m/s