Answer:
A) V_air = 1.295 L
B) Volume is not reasonable
Explanation:
A) Let;
m be total mass of the man
m_p be the mass of the man that pulled out of the water because of the buoyant force that pulled out of the lung
m_3 be the mass above the water with the empty lung
m_5 be the mass above the water with full lung
F_b be the buoyant force due to the air in the lung
V_a be the volume of air inside man's lungs
w_p be the weight that the buoyant force opposes as a result of the air.
Now, we are given;
m = 78.5 kg
m_3 = 3.2% × 78.5 = 2.512 kg
m_5 = 4.85% × 78.5 = 3.80725 kg
Now, m_p = m_5 - m_3
m_p = 3.80725 - 2.512
m_p = 1.29525 kg
From archimedes principle, we have the formula for buoyant force as;
F_b = (m_displaced water)g = (ρ_water × V_air × g)
Where ρ_water is density of water = 1000 kg/m³
Thus;
F_b = w_p = 1.29525 × 9.81
F_b = 12.7064 N
As earlier said,
F_b = (ρ_water × V_air × g)
Thus;
V_air = F_b/(ρ_water × × g)
V_air = 12.7064/(1000 × 9.81)
V_air = 1.295 × 10^(-3) m³
We want to convert to litres;
1 m³ = 1000 L
Thus;
V_air = 1.295 × 10^(-3) × 1000
V_air = 1.295 L
B) From research, the average lung capacity of an adult human being is 6 litres of air.
Thus, the calculated lung volume is not reasonable