Answer:

Explanation:
Hello,
In this case, by knowing the given reference reactions, one could rearrange them as follows:


Subsequently, to obtain the main reaction, we add the aforementioned reference rearranged reactions as shown below (just as reference):

Consequently, the equilibrium constant is computed as:
![Kp=\frac{[N_2][O_2]}{[NO]^2} * \frac{[NO_2]^2}{[N_2][O_2]^2} =Kp_2*Kp_3=4.35x10^{18}*7.056x10^{-13}=3.07x10^6](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5BN_2%5D%5BO_2%5D%7D%7B%5BNO%5D%5E2%7D%20%2A%20%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%5E2%7D%20%3DKp_2%2AKp_3%3D4.35x10%5E%7B18%7D%2A7.056x10%5E%7B-13%7D%3D3.07x10%5E6)
Best regards.
There both in our solar system
Info: Al(oh)3 might be an improperly capitalized: Al(OH)3
Error: Some elements or groups in the reagents are not present in the products: O
Error: equation Al4C3+H2O=Al(oh)3+CH4 is an impossible reaction
Please correct your reaction or click on one of the suggestions below:
Al4C3 + H2O = Al(OH)3 + CH4
Answer:
"A molecular, or covalent bond, is formed when atoms bond by sharing pairs of electrons. This sharing can occur from atom to atom, or from an atom to another molecular bond."
Explanation:
Google