Answer:
Explanation:
To find the mass percent composition of an element, divide the mass contribution of the element by the total molecular mass. This number must then be multiplied by 100% to be expressed as a percent.
Data Given:
Pressure = P = ?
Volume = V = 3.0 L
Temperature = T = 115 °C + 273 = 388 K
Mass = m = 75.0 g
M.mass = M = 44 g/mol
Solution:
Let suppose the Gas is acting Ideally. Then According to Ideal Gas Equation,
P V = n R T
Solving for P,
P = n R T / V ------ (1)
Calculating Moles,
n = m / M
n = 75.0 g / 44 g.mol⁻¹
n = 1.704 mol
Putting Values in Eq. 1,
P = (1.704 mol × 0.08205 atm.L.mol⁻¹.K⁻¹ × 388 K) ÷ 3.0 L
P = 18.08 atm
Answer:
<u>When small organic molecules bind together, they form larger molecules called biological macromolecules.</u>Biological macromolecules are important cellular components and perform a wide array of functions necessary for the survival and growth of living organisms. The four major classes of biological macromolecules are carbohydrates, lipids, proteins, and nucleic acids.
(i hope this helps)
The longest hydrocarbon chain in the given compound is hexane, therefore it is the parent chain to be considered with one methyl group attached to the 3rd carbon and one chloro attached on the 2nd carbon, therefore the name of the compound is 2-chloro-3-methylhexane
To have 35 pounds of quail eggs, he would need 14.5 kilograms
1 pound= .45 pounds