Glucose + Oxygen > Carbon Dioxide
C(6)H(12)0(6)+ 0(2) >CO(2)
Answer:
Mass = 13.23 g
Explanation:
Given data:
Mass of oxygen = 48.0 g
Mass of propane burn = ?
Solution:
Chemical equation:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 48.0 g/ 32 g/mol
Number of moles = 1.5 mol
now we will compare the moles of propane and oxygen.
O₂ : C₃H₈
5 : 1
1.5 : 1/5×1.5 = 0.3 mol
Mass of propane burn:
Mass = number of moles × molar mass
Mass = 0.3 mol × 44.1 g/mol
Mass = 13.23 g
A) acids because they start with h
The Henderson-Hasselbalch approximation is for conjugate acid-base pairs in a buffered solution. We're going to call HA a weak acid, and A- its conjugate base. The equation is as follows:
pH = pKa + log([base]/[acid]), where the brackets imply concentrations
Plugging in our symbols and the pKa value, the equation becomes:
pH = 4.874 + log([A-]/[HA])
Answer:
d. Temperature and number of molecules of gas
Step-by-step explanation:
Boyle's Law states, "The volume of a fixed mass of a gas is inversely proportional to the pressure if the temperature remains constant."
Let's examine the words.
"… volume…is inversely proportional to the pressure …" This means that volume and pressure are the <em>variables</em>.
"… fixed mass of a gas …" means that the number of molecules is constant.
"… temperature remains constant" speaks for itself.
a, c, and e are <em>wrong</em>, because pressure is a variable.
b is <em>wrong</em>, because volume is a variable.