The magnitude of their resultant vector is 4.6 meters/seconds
Since we are to add the velocity vectors in order to find the magnitude of their resultant vector.
Hence:
Resultant vector magnitude=5.8 meters/seconds + (1.2 meters/seconds)
Resultant vector magnitude=5.8 meters/seconds-1.2 meters/seconds
Resultant vector magnitude 4.6 meters/seconds
Inconclusion The magnitude of their resultant vector is 4.6 meters/seconds
Learn more here:
brainly.com/question/11134601
Answer:
hello, yes or nou sorry jaja
Answer:

West
Explanation:
m = Mass of car = 
t = Time = 9 seconds
u = Initial velocity = 30 m/s
v = Final velocity = 0
Impulse is given by

The magnitude of the total impulse applied to the car to bring it to rest is
.
The direction is towards west as the sign is negative.
Explanation:
Average speed = distance / time
|v| = (7 km + 2 km) / (2 hr + 1 hr)
|v| = 3 km/hr
Average velocity = displacement / time
v = (7 km east + 2 km east) / (2 hr + 1 hr)
v = 3 km/hr east
Answer:
Kinetic Energy
Explanation:
The potential energy is being converted into kinetic energy. The hitter has struck the ball transferring the kinetic energy from the swinging bat to the ball.