Answer/Explanation
Characteristics of Life Present in Viruses:
- has a defined boundary - viruses are made up simply of genetic material surrounded by a<u> protein capsid </u>and sometimes a lipid membrane
Characteristics of Life Absent in Viruses:
- made up of one or more cells - one of the main arguments for why viruses are not living is that they are <u>not cellular</u>
- uses energy - this is a tricky one. They don't use or produce their own energy. However, in order to reproduce they do hijack the host cells and <u>steal energy</u> from them in order to reproduce
- exhibits growth and development - although viruses do <u>reproduce</u>, the individual viral particles do not exhibit growth or development
- possess internal organisation - other than the fact they ahve genetic material, the inside of a virus does not contain internal organization like a cytosol, instead conssiting of the bare minimum amount of proteins to survive
- eliminates waste - since they do not have their own metabolism, they have no waste to eliminate
Answer:
9.1 mol
Explanation:
The balanced chemical equation of the reaction is:
CO (g) + 2H2 (g) → CH3OH (l)
According to the above balanced equation, 2 moles of hydrogen gas (H2) are needed to produce 1 mole of methanol (CH3OH).
To convert 36.7 g of hydrogen gas to moles, we use the formula;
mole = mass/molar mass
Molar mass of H2 = 2.02g/mol
mole = 36.7/2.02
mole = 18.17mol
This means that if;
2 moles of H2 reacts to produce 1 mole of CH3OH
18.17mol of H2 will react to produce;
18.17 × 1 / 2
= 18.17/2
= 9.085
Approximately to 1 d.p = 9.1 mol of methanol (CH3OH).
D I have a good feeling about d
The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of hydrogen gas to be used in the reaction. This will be the starting point of the calculations.
24.0 mol H2 (2 mol NH3 / 3 mol H2 ) = 16 mol NH3
Therefore, ammonia produced from the reaction given is 16 moles.
Answer:
False. They can be both omnivores and carnivores.