Fe2O3 + 2Al ---> Al2O3 + 2Fe
Mole ratio Fe2O3 : Al = 1:2
No. of moles of Fe2O3 = Mass/RMM = 250 / (55.8 * 2 + 16 * 3) = 1.56641604 moles
No. of moles of Al = 150/27 = 5.555555555 moles.
Mole ratio 1 : 2. 1.56641604 * 2 = 3.13283208 moles of Al, but you have 5.555555555 moles of Al. So Al is in excess. All of it won't react.
So take the Fe2O3 and Fe ratio to calculate the mass of iron metal that can be prepared.
RMM of Fe2O3 / Mass of Fe2O3 = RMM of 2Fe / Mass of Fe 159.6 / 250 = 111.6 / x x = 174.8 g of Fe
Answer:
solubility of X in water at 17.0
is 0.11 g/mL.
Explanation:
Yes, the solubility of X in water at 17.0
can be calculated using the information given.
Let's assume solubility of X in water at 17.0
is y g/mL
The geochemist ultimately got 3.96 g of crystals of X after evaporating the diluted solution made by diluting the 36.0 mL of stock solution.
So, solubility of X in 1 mL of water = y g
Hence, solubility of X in 36.0 mL of water = 36y g
So, 36y = 3.96
or, y =
= 0.11
Hence solubility of X in water at 17.0
is 0.11 g/mL.
In large doses it stops cells using oxygen causing these cells to die. So in a small amount it would not kill you. So lets say cyanide is inside the body it would kill off all the cells and your body would not be able to function causing death
Answer:
Explanation:
Hello,
Based on the statement of the equilibrium law:

By increasing (doubling) the amount of carbon monoxide, the production of nickel will increase since its amount is directly proportional with its pressure, so, by adding more reactant (in this case carbon monoxide), the equilibrium is rightward shifted based on Le Châtelier's principle even when solid either reactants or products are not contemplated in the equilibrium law.
Best regards.