Answer:
D +405.0kJ mol-¹
Explanation:
Since bond energy is the energy required to break a bond, the energy of dissociation of X₂H₆ = +2775 kJmol⁻¹.
Since there is one X-X bond and six X-H bonds,
Bond energy of one X-X bond + Bond energy of six X-H bonds = energy of dissociation of X₂H₆.
Since bond energy of one X-H bond = 395 kJ mol⁻¹, then
Bond energy of one X-X bond + Bond energy of six X-H bonds = energy of dissociation of X₂H₆
Bond energy of one X-X bond + 6 × one X-H bond = +2775 kJmol⁻¹.
Bond energy of one X-X bond + 6 × 395 kJ mol⁻¹ = +2775 kJmol⁻¹.
Bond energy of one X-X bond + 2370 kJ mol⁻¹ = 2775 kJmol⁻¹
Bond energy of one X-X bond = 2775 kJmol⁻¹ - 2370 kJ mol⁻¹
Bond energy of one X-X bond = +405 kJmol⁻¹
Hey there!:
mass = 41.2 g
Volume = 8.2 cm³
Therefore:
D = m / V
D = 41.2 / 8.2
D = 5.02 g/cm³
Answer: Option (4) is the correct answer.
Explanation:
It is known that equilibrium constant is represented as follows for any general reaction.

K = ![\frac{[C][D]}{[A][B]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BC%5D%5BD%5D%7D%7B%5BA%5D%5BB%5D%7D)
As equilibrium constant is directly proportional to the concentration of products so more is the value of equilibrium constant more will be the number of products formed.
As a result, more is the time taken by the reaction to reach towards equilibrium. Whereas smaller is the value of equilibrium constant more rapidly it will reach towards the equilibrium.
Thus, we can conclude that cases where K is a very small number will require the LEAST time to arrive at equilibrium.
Answer:
C:Rainwater dissolves minerals out of the rocks and soil along the stream during runoff