Answer:
2 mol H
Explanation:
For every 2 mol of NaOH, we're reacting 2 mol of H2O. In order to figure out how many mol of H are needed, it needs to be set up stochiometrically. Starting off with the given value, 1 mol of NaOH, we can then make a mol to mol ratio. For 2 mol of NaOH, we have 2 mol of H2O. For every 2 mol of H2O, we have 4 mol of H (this is because we are multiplying the coefficient by the subscript: 2 × 2). Now, we can solve for our answer.
1 mol NaOH × (2 mol H₂O / 2 mol NaOH) × (4 mol H / 2 mol H₂O)
= 2 mol H
Thus, we get 2 mol of H are needed to completely react 1 mol of NaOH.
Neon is a member of the noble gas family. Other elements in this family includes helium, argon, krypton, xenon, and radon. These gases are in Group 18 (VIIIA) of the periodic table. The periodic table is a chart that shows how chemical elements are related to each other. The noble gases are sometimes called the inert gases. This name comes from the fact that these elements do not react very readily. In fact, compounds exist for only three noble gases—krypton, radon, and xenon. Chemists have yet to prepare compounds of helium, neon, or argon.
Answer:
O.1M
Explanation:
First let's generate a balanced equation for the reaction
NaOH + HCl —>NaCl + H2O
From the equation,
The ratio of the acid to base is 1:1.
From the question, we obtained the following:
Ma = Molarity of acid = 0.12M
Va = volume of acid = 21.35cm3
Vb = volume of base = 25.55cm3
Mb = Molarity of base =?
We obtained nA(mole of acid) and nB(mole of base) to be 1
The molarity of the base can be calculated for using:
MaVa/ MbVb = nA / nB
0.12x21.35 / Mb x 25.55 = 1
Cross multiply to express in linear form
Mb x 25.55 = 0.12x21.35
Divide both side by 25.55
Mb = (0.12x21.35) / 25.55
Mb = 0.1M
The molarity of the base is 0.1M
The answer to your question is letter D. Secured.