Explanation:
Given data
velocity v= 25m/s
The time it takes to put on brake t= 0.3s
the distance covered when the brake was put on is
v=s/t
s= v*t
s= 25*0.3s
s= 7.5m
hence the distance covered is 7.5m
Also the rate of decrease in aceleration is 5m/s^2
we can also calculate the distance covered at this rate
v^2=u^2+2as
25^2= 0+2*5*s
625=10s
divide both sides by 10
s=625/10
s= 62.5m
The total distance covered between putting on the brakes and decelareation is 7.5+62.5= 70m
Given that the tree is 75m ahead, the car would not hit the tree
Answer:
Option D (Alphonse Bertillon) is the correct response.
Explanation:
- He seems to have been a policeman turned biometrics expert from France. Forensic techniques such as forensic record analysis were developed by Bertillon.
- To retain proof, he always pioneered or developed the use of such galvanoplastic compounds as molds for footsteps as well as ballistics. To research physical changes with age, Bertillon has developed a method focused on images of almost the same person’s performance.
All those other choices weren’t connected to the instance offered. So, the best one is the one described.
The total displacement is equal to the total distance. For the east or E direction, the distance is determined using the equation:
d = vt = (22 m/s)(12 s) = 264 m
For the west or W direction, we use the equations:
a = (v - v₀)/t
d = v₀t + 0.5at²
Because the object slows down, the acceleration is negative. So,
-1.2 m/s² = (0 m/s - 22 m/s)/t
t = 18.33 seconds
d = (22 m/s)(18.33 s) + 0.5(-1.2 m/s²)(18.33 s)²
d = 201.67 m
Thus,
Total Displacement = 264 m + 201.67 m = 465.67 or approximately 4.7×10² m.