1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
5

Sinisimulan ko Kaya Ko Gagawin ko Nalaman ko Natututo Ako

Physics
1 answer:
ozzi3 years ago
7 0

Answer:

what!!!!!!

Explanation:

didn't got the point

You might be interested in
How does the observed pitch of the buzzer change as it moves
andriy [413]

The answer is

Pitch of the buzzer increased (higher tone) as it moves towards the observer

5 0
2 years ago
Which of the following expressions will have units of kg⋅m/s2? Select all that apply, where x is position, v is velocity, m is m
netineya [11]

Answer: m \frac{d}{dt}v_{(t)}

Explanation:

In the image  attached with this answer are shown the given options from which only one is correct.

The correct expression is:

m \frac{d}{dt}v_{(t)}

Because, if we derive velocity v_{t} with respect to time t we will have acceleration a, hence:

m \frac{d}{dt}v_{(t)}=m.a

Where m is the mass with units of kilograms (kg) and a with units of meter per square seconds \frac{m}{s}^{2}, having as a result kg\frac{m}{s}^{2}

The other expressions are incorrect, let’s prove it:

\frac{m}{2} \frac{d}{dx}{(v_{(x)})}^{2}=\frac{m}{2} 2v_{(x)}^{2-1}=mv_{(x)} This result has units of kg\frac{m}{s}

m\frac{d}{dt}a_{(t)}=ma_{(t)}^{1-1}=m This result has units of kg

m\int x_{(t)} dt= m \frac{{(x_{(t)})}^{1+1}}{1+1}+C=m\frac{{(x_{(t)})}^{2}}{2}+C This result has units of kgm^{2} and C is a constant

m\frac{d}{dt}x_{(t)}=mx_{(t)}^{1-1}=m This result has units of kg

m\frac{d}{dt}v_{(t)}=mv_{(t)}^{1-1}=m This result has units of kg

\frac{m}{2}\int {(v_{(t)})}^{2} dt= \frac{m}{2} \frac{{(v_{(t)})}^{2+1}}{2+1}+C=\frac{m}{6} {(v_{(t)})}^{3}+C This result has units of kg \frac{m^{3}}{s^{3}} and C is a constant

m\int a_{(t)} dt= \frac{m {a_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{4}} and C is a constant

\frac{m}{2} \frac{d}{dt}{(v_{(x)})}^{2}=0 because v_{(x)} is a constant in this derivation respect to t

m\int v_{(t)} dt= \frac{m {v_{(t)}}^{2}}{2}+C This result has units of kg \frac{m^{2}}{s^{2}} and C is a constant

6 0
3 years ago
Yashoda prepares some lime juice on a hot day. She adds 80 g of ice at a temperature of 0°C to 0.32 kg of lime juice. The temper
Vikentia [17]

Answer:

Explanation:

a )

hear energy required to melt 1 g of ice = 340 J ,

hear energy required to melt 80 g of ice = 340 x 80  J = 27220 J .

b ) energy gained by the melted ice ( water at O°C ) = m ct

where m is mass of water , s is specific heat and t is rise in temperature

= 80 x 4.2 x ( 8°C - 0°C)

= 2688 J .

c )

energy lost by lime juice = energy gained by ice and water

= 27220 J + 2688 J .

= 29908 J .

d )

Let specific heat required be S

Heat lost by lime juice = M S T

M is mass of lime juice , S is specific heat , T is decrease in temperature

= 320 g x S x ( 29 - 8 )°C

= 6720 S

For equilibrium

Heat lost = heat gained

6720 S = 29908 J

S = 4.45 J /g °C .

4 0
3 years ago
A 15 n force directed to the west acts on an object for 3.0 seconds, what is the change in momentum of the object?
pickupchik [31]
By definition we have that
 force=dP/dt,
 where
 p is momentum
 so
 <span>momentum is force*time
 p= 15*3 = 45 Ns , west.
 </span><span>the change in momentum of the object is 45 N.s</span>
7 0
3 years ago
In a local bar, a customer slides an empty beer mug down the counter for a refill. The height of the counter is 1.42 m. The mug
telo118 [61]

Answer:

a) V_{x}=3.72m/s, b) ∠=-54.83°

Explanation:

In order to solve this problem, we must start with a drawing of the situation, this will help us visualize the problem better. (See picture attached).

a)

Now, the idea is that the beer mug has a horizontal speed and no vertical speed at initial conditions. So knowing this, we can start finding the initial velocity of the mug.

In order to do so, we need to find the time it takes for the mug to reach the ground. We can find it by using the following equation:

y=y_{0}+V_{y0}t+\frac{1}{2}a_{y}t^{2}

We can see from the drawing that y and the initial velocity in y are zero, so we can simplify our formula:

0=y_{0}+\frac{1}{2}a_{y}t^{2}

so we can solve for t, so we get:

t=\sqrt{\frac{-(2)y_{0}}{a}}

so now we can substitute the known values, so we get:

t=\sqrt{\frac{-(2)(1.42)}{-9.8}}

which yields:

t=0.538s

So we can use this value to find the velocity in x:

V_{x}=\frac{x}{t}

When substituting we get:

V_{x}=\frac{2m}{0.538s}

which yields:

V_{x}=3.72m/s

b)

In order to solve part b, we need to find the y-component of the velocity, for which we can use the following formula:

\Delta y=\frac{V_{f}^{2}-V_{0}^{2}}{2a}

We know that V_{0} is zero, so we can simplify the expression:

\Delta y=\frac{V_{yf}^{2}}{2a}

So we can solve the equation for V_{yf}^{2} so we get:

V_{yf}=\sqrt{2\Delta y a}

and when substituting the known values we get:

V_{yf}=\sqrt{2(-1.42m)(-9.8m/s^{2})}

which yields:

V_{yf}=-5.28m/s

Once we got the final velocity in y, we can use it together with the velocity in x to find the angle.

So we can use the following formula:

tan \theta =\frac{V_{y}}{V_{x}}

when solving for theta we get:

\theta = tan^{-1}(\frac{V_{y}}{V_{x}})

We can substitute so we get:

\theta = tan^{-1}(\frac{-5.28m/s}{3.72m/s})

which yields:

\theta = -54.83^{o}

7 0
3 years ago
Other questions:
  • What would happen if you held the South Pole of one magnet near the North Pole of another magnet of the same size?
    5·2 answers
  • What is the smallest particle that can completely represent water?
    15·2 answers
  • What type of wave is the highest on the electromagnetic spectrum?
    14·1 answer
  • A force of 36 Newtons causes an object to accelerate from rest to a speed of 12 m/s in 6.0 seconds. What is the mass of the obje
    12·1 answer
  • The product of an object’s mass and velocity
    11·2 answers
  • WILL GIVE BRAINLIEST! QUICK PLEASE HELP!!!
    8·1 answer
  • What is the dependent variable in an experiment testing the effects of pH on growth of a seed?
    11·1 answer
  • At do we call the cells that are made as the end result<br> of meiosis?
    12·1 answer
  • a school bus takes 0.50 hours to reach the school from your home. if the average speed of the bus is 20km/h, what is displacemen
    10·1 answer
  • Gibbons move through the trees by swinging from successive handholds, as we have seen. To increase their speed, gibbons may brin
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!