1 m = 1 000 000 ym
converted other way we can say that:
1 ym =

m
Now, since we have ym^2 which is ym*ym which means:
1 ym^2 =

m
we have 1,5 ym^2 which means that answer is:
Answer:
No
Explanation:
The fastest recorded time for a person to run 100 metres is 9.58 seconds, which is the equivalent of 10.4 metres per second
Explanation:
Given:
v₀ = 0 m/s
a = 3 m/s²
t = 4 s
Find: Δx and v
Δx = v₀ t + ½ at²
Δx = (0 m/s) (4 s) + ½ (3 m/s²) (4 s)²
Δx = 24 m
v = at + v₀
v = (3 m/s²) (4 s) + 0 m/s
v = 12 m/s
Answer:
140265.8 C = 1.403 × 10⁵ C
Explanation:
The battery's electric potential energy is used to account for the kinetic and potential work done in moving the car up this hill.
Potential work required to move the 757 kg car up a vertical height of 195 m = mgh
P.E = 757 × 9.8 × 195 = 1446627 J
Kinetic work done = (1/2)(m)(v²)
K.E = (1/2)(757)(25²) = 236562.5 J
Total work done in moving the car up that height = 1446627 + 236562.5 = 1683189.5 J
And this would be equal to the potential of the battery.
For the battery, potential difference = (electric potential energy)/(charges moved)
ΔV = ΔU/q
q = ΔU/ΔV
ΔU = 1683189.5 J
ΔV = 12.0 V
q = 1683189.5/12 = 140265.8 C
R = ρ L/A. R= resistance, ρ= resistivity, L= length of the conductor. A = area of the conductor. Resistance is directly proportional to the length of the conductor. So if length of the conductor is decreased, resistance will also decrease. Hence A is the correct option