1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
2 years ago
7

Which data set has the largest range?

Physics
1 answer:
astra-53 [7]2 years ago
4 0

Answer:

Line the numbers from smallest to largest the subtract the smallest from the largest numbers.

Explanation:

You might be interested in
The equation of a transverse wave traveling along a string is 1 1 y (2.00 mm)sin[(20 m )x (600 s )t] − − = − Find the (a) amplit
Lelu [443]

Answer:

a)Amplitude ,A = 2 mm

b)f=95.49 Hz

c)V=  30 m/s  ( + x direction )

d)  λ = 0.31 m

e)Umax= 1.2 m/s

Explanation:

Given that

y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]

As we know that standard form of wave equation given as

y=A sin(\phi -\omega t)

A= Amplitude

ω=Frequency (rad /s)

t=Time

Φ = Phase difference

y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]

So from above equation we can say that

Amplitude ,A = 2 mm

Frequency ,ω= 600 rad/s                     (2πf=ω)

ω= 2πf

f= ω /2π

f= 300/π = 95.49 Hz

K= 20 rad/m

So velocity,V

V= ω /K

V= 600 /20 = 30 m/s  ( + x direction )

V = f λ

30 = 95.49 x  λ

 λ = 0.31 m

We know that speed is the rate of displacement

U=\dfrac{dy}{dt}

U=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]

U=1200\ cos[(20m^{-1})x-(600s^{-1})t]\ mm/s

The maximum velocity

Umax = 1200 mm/s

Umax= 1.2 m/s

8 0
3 years ago
At a baseball game, you are in the cheap seats and far from the batter. You see the ball moving before you hear the sound of the
bogdanovich [222]

Answer:

it is he sound of source it uses ur ears to hear something unectpected can u give me brainly plz

Explanation:

6 0
3 years ago
Pics pls you know what I mean
V125BC [204]

boiiii I wont show you nun

4 0
3 years ago
17.Explain the different ways that an object can become electrically charged.
Debora [2.8K]

17.

There are three different methods for charging objects:

- Friction: in friction, two objects are rubbed against each other. As a result, electrons can be passed from one object to the other, so one object will gain a net negative charge while the other object will gain a net positive charge due to the lack of electrons.

- Conduction: this occurs when two conductive objects are put in contact with each other, and charges (electrons, usually) are transferred from one object to the other one.

- Induction: this occurs when two objects are brought closer to each other, but not in contact. If one of the two objects has a net charge (different from zero) on its surface, then it will induce a movement of charges in the second object: in particular, in the second object, charges of the opposite polarity will be attracted towards the first object, while charges of same polarity will be repelled further away.

18.

Charged objects produce around themselves an electric field. The strenght of the electric field is given by (assuming the charged objects are spherical)

E=k\frac{q}{r^2}

where k is the Coulomb's constant, q is the magnitude of the charge and r the distance from the centre of the charge. As we see, the strength of the field is inversely proportional to the square of the distance.

Also, the direction of the field is determined by the sign of the charge:

- if the charge is positive, the electric field points away from the charge (this means that other positive charges in the field will be repelled away)

- if the charge is negative, the electric field points towards the charge (this means that other positive charges in the field will be attracted towards it)

19.

Electrical force is given by:

F=k\frac{q_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 are the two charges, and r their separation.

Gravitational force is given by:

F=G\frac{m_1 m_2}{r^2}

where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r their separation.

Similarities between the two forces:

- Both are inversely proportional to the square of the distance between the two objects, r

- Both are non-contact forces (the two objects can experience the forces even if they are not in contact)

- Both forces have infinite range

Differencies between the two forces:

- The electric force can be either attractive or repulsive, while the gravitational force is attractive only

- The electric force is much stronger than the gravitational force, due to the much larger value of the Coulomb's constant k compared to the gravitational constant G

4 0
3 years ago
An object is released from height of 17m. <br> The object will hit the ground approximately in
zzz [600]

\text{Given that,}\\\\\text{Height, h = 17 m}\\\\\\\text{We know that,}\\\\h = v_0t + \dfrac 12  gt^2\\\\\implies h = \dfrac 12 gt^2\\\\\implies t^2 = \dfrac{2h}g\\\\\implies t =\sqrt{\dfrac{2h}g} = \sqrt{\dfrac{2(17)}{9.81}} = 1.87 ~ \text{sec}

5 0
2 years ago
Other questions:
  • What is the unit for resistance?
    12·1 answer
  • The third wire in a three-pronged plug is called a
    8·2 answers
  • What is general relativity
    10·1 answer
  • What type of front usually brings thunder clouds and storms
    12·2 answers
  • Hi, does anyone know the answer for question 2 or 3? Thank you
    8·1 answer
  • A ball was dropped and had a mass of .2 kg and was falling with a force of 2 N, what was its acceleration?
    13·1 answer
  • Which statement below is correct?
    11·2 answers
  • An astronomy class is so excited by the discovery of planets around other stars that they decide to do a library exhibit on the
    7·1 answer
  • Please help! major part of my grade..
    9·2 answers
  • What are possible formulas for impulse? Check all that apply.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!