Answer:For a perfectly elastic collision, the final velocities of the carts will each be 1/2 the velocity of the initial velocity of the moving cart. For a perfectly inelastic collision, the final velocity of the cart system will be 1/2 the initial velocity of the moving cart.
Explanation:
I DONT know FiGURE it out YOURSELF
Answer:
material work function is 0.956 eV
Explanation:
given data
red wavelength 651 nm
green wavelength 521 nm
photo electrons = 1.50 × maximum kinetic energy
to find out
material work function
solution
we know by Einstein photo electric equation that is
for red light
h ( c / λr ) = Ф + kinetic energy
for green light
h ( c / λg ) = Ф + 1.50 × kinetic energy
now from both equation put kinetic energy from red to green
h ( c / λg ) = Ф + 1.50 × (h ( c / λr ) - Ф)
Ф =( hc / 0.50) × ( 1.50/ λr - 1/ λg)
put all value
Ф =( 6.63 ×
(3 ×
) / 0.50) × ( 1.50/ λr - 1/ λg)
Ф =( 6.63 ×
(3 ×
) / 0.50 ) × ( 1.50/ 651×
- 1/ 521 ×
)
Ф = 1.5305 ×
J × ( 1ev / 1.6 ×
J )
Ф = 0.956 eV
material work function is 0.956 eV
The maximum pressure variations the human ear can withstand above and below atmospheric pressure is around 30 pa. the normal atmospheric pressure is around 101325 pa. hence the variation in the maximum pressure for human ear is very small as compared to the atmospheric pressure. if the ear is exposed to a pressure greater than this , it can cause permanent damage to the ear.
Refraction is said to occur when there is a change in the speed of light.
<h3>What is the angle of refraction?</h3>
We know that refraction is said to occur when there is a change in the speed of light as it travels form one medium to another.
Given that the refractive index of the rectangular glass block is 1.5. The angle of refraction can be obtained by the use of the Snell's law;
n = sin i /sinr
n = refractive index
sini = angle of incidence
sin r = angle of refraction
sinr = sini/n
sinr = sin 45/1.5
= 0.471
r = 28 degrees
b) Now;
sinr =sin 45/1.2
sinr = 0.589
r = 36 degrees
For the glass
sinr = sin 36/1.5
sin r = 0.392
r = 23 degrees
Learn more about angle of refraction:brainly.com/question/2660868
#SPJ1