<span>One thing that radio waves, microwaves, light, and x-rays all have in common is that they are all forms of electromagnetic waves.</span>
Answer:C
Explanation:
Given
mass
is at
mark
mass
is at
mark
Scale is Pivoted at 
For scale to be in equilibrium net torque must be equal to zero
Taking ACW as positive thus


Therefore a net torque of 0.04 g is required in CW sense which a mass
can provide at a distance of
from pivot


therefore in meter stick it is at a distance of 
If you stir the juice it increases the surface area.
I think it’s luminosity. I really hope it’s right and helped you.
You'd have an easier time using the equation if you understood where the equation comes from.
The law here ... the major principle to remember, the key, the fundamental truth, the big cookie ... is the fact that momentum is conserved. <em>The total momentum after they join up is the same as the total momentum before they meet.</em>
Momentum of an object is (mass) times (speed).
Now, list all the things you know, before and after the putty meets the ball:
<u>Before:</u><u> </u>There are two objects.
Mass of putty = 3 kg
Speed of putty = 5m/s
Momentum of putty = 3 x 5 = 15 kg-m/s.
Mass of ball = 5 kg
Speed of ball = zero
Momentum of ball = 5 x 0 = zero
Total momentum of both things = 15 kg-m/s
<u>After</u>: There is only one object, because they stuck together.
Mass of (putty+ball) = (3+5) = 8 kg
Speed of (putty+ball) = we don't know; that's what we have to find
Momentum of (putty+ball) = 8 x (speed)
===================================
We know that the momentum after is equal to the momentum before.
8 x (speed) = 15 kg-m/s
Divide each side by 8 :
Speed = 15 / 8 = <em>1.875 m/s </em> after they stick together.