Answer:Counter,
0.799,
1.921
Explanation:
Given data




Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger
Equating Heat exchange
![m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]](https://tex.z-dn.net/?f=m_hc_%7Bph%7D%5Cleft%20%5B%20T_%7Bh_i%7D-T_%7Bh_o%7D%5Cright%20%5D%3Dm_cc_%7Bpc%7D%5Cleft%20%5B%20T_%7Bc_o%7D-T_%7Bc_i%7D%5Cright%20%5D)
=
we can see that heat capacity of hot fluid is minimum
Also from energy balance

=


NTU=1.921





A function is a block of organized, reusable code that is used to perform a single, related action. Functions provide better modularity for your application and a high degree of code reusing. ... Different programming languages name them differently, for example, functions, methods, sub-routines, procedures, etc.
Answer:
1500Ω
Explanation:
Given data
voltage = 15 V
total Resistance = 4000Ω
potential drop V = 9.375 V
To find out
R2
Solution
we know R1 +R2 = 4000Ω
So we use here Ohm's law to find out current I
current = voltage / total resistance
I = 15 / 4000 = 3.75 ×
A
Now we apply Kirchhoffs Voltage Law for find out R2
R2 = ( 15 - V ) / current
R2 = ( 15 - 9.375 ) / 3.75 ×
R2 = 1500Ω
Answer:
Rate of heat transfer is 0.56592 kg/hour
Explanation:
Q = kA(T2 - T1)/t
Q is rate of heat transfer in Watts or Joules per second
k is thermal conductivity of the styrofoam = 0.035 W/(mK)
A is area of the cubical picnic chest = 6L^2 = 6(0.5)^2 = 6×0.25 = 1.5 m^2
T1 is initial temperature of ice = 0 °C = 0+273 = 273 K
T2 is temperature of the styrofoam = 25 °C = 25+273 = 298 K
t is thickness of styrofoam = 0.025 m
Q = 0.035×1.5(298-273)/0.025 = 1.3125/0.025 = 52.5 W = 52.5 J/s
Mass flow rate = rate of heat transfer ÷ latent heat of melting of ice = 52.5 J/s ÷ 3.34×10^ 5 J/kg = 1.572×10^-4 kg/s = 1.572×10^-4 kg/s × 3600 s/1 hr = 0.56592 kg/hr
it is technician B i belive im not sure the question tho