Answer:

Explanation:
The weight of an object on Earth is given by
, so we can calculate its mass by doing
, which for our values is:

<em>Nothing is being asked</em> about Io but if one wanted to know the weight <em>W'</em> of the watermelon there one just have to do:

Well formation of metallic bond depends on free electrons.smaal sized atoms hold their electrons more firmly as compared to large size atoms ,this z due to distance of outer shell electrons by nucleus..in this way no of free electrons affect strength of metallic bond..smaal sized atoms release less free electrons..
The given data is incomplete. The complete question is as follows.
At an accident scene on a level road, investigators measure a car's skid mark to be 84 m long. It was a rainy day and the coefficient of friction was estimated to be 0.36. Use these data to determine the speed of the car when the driver slammed on (and locked) the brakes. (why does the car's mass not matter?)
Explanation:
Let us assume that v is the final velocity and u is the initial velocity of the car. Let s be the skid marks and
be the friction coefficient and m be the mass of car.
Hence, the given data is as follows.
v = 0, s = 84 m,
= 0.36
According to Newton's law of second motion the expression for acceleration is as follows.
F = ma
= ma
= ma
a = 
Also,



= 
= 24.36 m/s
Thus, we can conclude that the speed of the car when the driver slammed on (and locked) the brakes is 24.36 m/s.
D. mechanical energy is transformed into sound energy.
0.36 J of work is done in stretching the spring from 15 cm to 18 cm.
To find the correct answer, we need to know about the work done to strech a string.
<h3>What is the work required to strech a string?</h3>
- Mathematically, the work done to strech a string is given as 1/2 ×K×x².
- K is the spring constant.
<h3>What will be the spring constant, if 40N force is required to hold a 10 cm to 15 cm streched spring?</h3>
- The force experienced by a streched spring is given as Kx. x is the length of the spring streched from its natural length.
- Then K = Force / x.
- Here x = 15 - 10 = 5 cm = 0.05 m
- K = 40/0.05 = 800N/m.
<h3>What will be the work required to strech that spring from 15 cm to 18 cm?</h3>
- Work done = 1/2×k×x²
- Here x= 18-15=3cm or 0.03 m
- So, W= 1/2×800×0.03² = 0.36 J.
Thus, we can conclude that the work done is 0.36 J.
Learn more about the spring force here:
brainly.com/question/14970750
#SPJ4