Waters boiling point is 100°C and 212°F
<span>The metal that would more easily lose an electron would be potassium. It is more reactive than sodium. Also, looking on the periodic table, </span><span>from top to bottom for groups 1 and 2, reactivity increases. So, it should be potassium. Hope this answers the question. Have a nice day.</span>
Answer:
John Dalton
Explanation:
John Dalton in 1808 suggested that all matter consists of tiny particles called atoms and that the atoms of a specific element are identical.
He postulated the Dalton's atomic theory which has the following important parts;
- All matters consists of indivisible particles called atoms
- Atoms of the same element are similar and are different from atoms of other elements.
- Atoms can neither be created nor destroyed.
- Atoms combine in simple whole ratios to form compounds.
Molality is defined as 1 mole of a solute in 1 kg of solvent.
Molality=

Number of moles of solute, n=

Given mass of the nitrobenzene=0.2 g
Molar mass of the substance= 123.06 g mol⁻¹
Number of moles of nitrobenzene,

Number of moles of nitrobenzene, n= 0.0016 mol
Mass of 10.9 g of naphthalene in kg=0.0109

Molality= 0.146 m
We’ll be using the equation:
dG = dH - TdS (replace ‘d’ with triangle)
I’m going to assume 0 degrees Celsius.
At 0 C (273 K):
dG = dH - TdS
dG = (285,400 J) - (273 K)(-137.14 J/K)
dG = 285,400 J + 37,439.2 J
dG = 322,839.2 J or 322.84 kJ
The dG of this reaction is +322.84 kJ. This reaction is not considered spontaneous.
This answer, in this instance, would be D. If the temperature used in the question is not 0 degrees C, replace the temperature that I used for calculation with the Kelvin temperature given in the problem (K = C + 273), and simplify to find the answer.