Answer:
The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.
Explanation:
In this ideal engine, none of these events would happen due to the nature of the efficiency.
We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.
n=W, total/(E, available).
However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.
Answer: The question has some missing details. The initial velocity given as u = -6.5i + 17j + 13k and the final velocity v = -2.8i + 17j -9.3k.
a) = (1.82i - 9.69k)m/s2
b) magnitude = 9.85m/s2
c) direction = 280.64 degree
Explanation:
The detailed and step is shown in the attachment.
Icecaps that are dissolving, a system of canal-like geometric features, and various pitch black surface markings are all thought to be vegetation are the observations of the martian surface led Lowell to the conclusion that intelligent life forms existed on Mars.
<h3>What is a solar system?</h3>
It is a system that collection of all the planets and spatial bodies revolving around the sun because of the gravitational pull of the sun.
Our Solar System is based on a heliocentric model in which the Sun is assumed to reside at the central point of the planetary system.
In other words, the Sun is at the center while the Earth and other planetary bodies revolve around it.
Lowell came to the conclusion that intelligent life existed on Mars based on his observations of the martian surface, which included melting icecaps, a network of geometric patterns that resemble canals, and numerous markings on the completely black surface that are believed to be flora.
Learn more about Solar systems from here,
brainly.com/question/12075871
#SPJ4
Answer:
The first graph is showing the constant acceleration (1 m/s)
Explanation:
The second graph showing the flexible velocity therefore a in the graph is different at t1, t2, t3, t4
The last graph is showing constant velocity therefore there is no acceleration (a = 0)
a) KE=0.5*mv^2==0.5*145*25^2=45312.5 J
b) PE=mgh=145*9.8*3.5=4973.5 J
c) ME=KE+PE=m(0.5v^2+gh)=62524 J