By stirring and increasing temperature, there is an increase in dissolving capacity of the solid solute.
<u>Explanation:</u>
If a solute is added to the solution, it doesn't get dissolve easily then we have to increase the temperature, which in turn increases the movement of the solvent (may be water) and the solute particles, thus increases the dissolving power of the solid solute. One more way is by constant stirring, that is by making more contact among the solvent as well as the solute particles there by increasing the solubility of solid solute.
Answer: The molar mass of H2S is greater than the molar mass of NH3, making the velocity and effusion rate of NH3 particles faster.
Effusion rate is inversely proportional to molar mass.
NH3 will have a higher average molecule velocity, so it will diffuse faster and will reach the other side of the room more quickly.
Explanation: change up your response a bit
Answer:

Explanation:
In its raw form, function notation essentially represents an equation with only one unknown variable, expressed in terms of another. Thus, f(x) = x² + 7x can be expressed as
g(x) = 2x + 3
f(g(x)) = (2x + 3)²
f(g(x)) = 4x² + 12x + 9
Hope it helps :) and let me know if you want me to elaborate.
CaCO₃ + 2HCl = CaCl₂ + CO₂ + H₂O
n(CaCO₃)=m(CaCO₃)/M(CaCO₃)
n(CaCO₃)=13.00/100.09=0.1299 mol
Δm=13.00+52.65-60.32=5.33 g
m(CO₂)=5.33 g
n(CO₂)=5.33/44.01=0,1211 mol
w=0.1211/0.1299=0,9323 (93.23%)
To solve this problem, all we have to do it to make use of
the principle of ratio and proportion. We are given the following ratio:
1 part Chlorine / 10 parts Water
Now to determine the amount of chlorine needed for 15
ounces of water, all we have to do is to use proportion. Let us say that the
amount of Chlorine needed is x, therefore:
1 part Chlorine / 10 parts Water = x / 15 ounces Water
so,
1 / 10 = x / 15
Therefore calculating for x:
x = 15 / 10
<span>x = 1.5 ounces of Chlorine</span>