Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.

1. rancidification fixation of water is CHEMICAL CHANGE
2. Tearing of paper is PHYSICAL CHANGE
3. Rusting if iron is CHEMICAL CHANGE
4. Electrolysis of water is CHEMICAL CHANGE
Answer:
CH4 + 4Cl2 --> CCl4 + 4HCl
Explanation: Message me if you need a thorough explanation
1 mol of Br = 79.9 g
15.7 g / 79.9 g = 0.196 moles of atoms
I'd say the correct answer is: Noodles rising and falling apart in boiling water.