The required amount of silver nitrate to produce 16.2g of silver is 25.48 grams.
<h3>What is the relation between mass & moles?</h3>
Relation between the mass and moles of any substance will be represented as:
n = W/M, where
- W = given mass
- M = molar mass
Moles of silver = 16.2g / 107.8g/mol = 0.15mol
From the stoichiometry of the given reaction it is clear that, same moles of silver nitrate is required to produce same moles of silver. So 0.15 moles of silver nitrate is required.
Mass of silver nitrate = (0.15mol)(169.87g/mol) = 25.48g
Hence required mass of silver nitrate is 25.48g.
To know more about mass & moles, visit the below link:
brainly.com/question/19784089
#SPJ4
Answer:
Silver, 0.239 J/(g °C)
Explanation:
- The heat change is related to specific heat as given by the formula;
Heat change = mass of substance × specific heat × change in temperature
- Therefore; considering same amount of substance or equal masses and have the same initial temperature.
- The change in temperature will be inversely proportional to the specific heat.
- Therefore; the higher the specific heat lower the temperature change.
- Hence, the change in temperature will be highest for the substance with the lowest specific heat.
Therefore; the one that will increase in temperature the most is Silver
There are 0.566 moles of carbonate in sodium carbonate.
<h3>CALCULATE MOLES:</h3>
- The number of moles of carbonate (CO3) in sodium carbonate (Na2CO3) can be calculated by dividing the mass of carbonate in the compound by the molar mass of the compound.
- no. of moles of CO3 = mass of CO3 ÷ molar mass of Na2CO3
- Molar mass of Na2CO3 = 23(2) + 12 + 16(3)
- = 46 + 12 + 48 = 106g/mol
- mass of CO3 = 12 + 48 = 60g
- no. of moles of CO3 = 60/106
- no. of moles of CO3 = 0.566mol
- Therefore, there are 0.566 moles of carbonate in sodium carbonate.
Learn more about number of moles at: brainly.com/question/1542846
The gradient is the slope of a linear equation, represented in the simplest form as y = mx + b. In Earth Science, the gradient is usually used to measure how steep certain changes in elevation are.
In order to find the gradient in a topographical setting, one must know two things: the elevation of two points and the distance between the two points. Once these values are known, the gradient can be found by dividing the change in field value, or the change in elevation, by the distance. The higher the gradient value is, the steeper the slope is.