We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
Explanation:
→ Volume of cone = πr² × h/3
Here,
- Radius (r) = 13 cm
- Height (h) = 27 cm
→ Volume of cone = π(13)² × 27/3 cm³
→ Volume of cone = 169π × 9 cm³
→ Volume of cone = 1521π cm³
→ Volume of cone = 1521 × 22/7 cm³
→ Volume of cone = 33462/7 cm³
→ <u>Volume of cone = 4780.28 cm³</u>
Answer:
1.5 m
Explanation:
Let the distance from the box to the pivot be c.
Let the distance from the pivot to the effort be y.
From the question given above, the following data were obtained:
Effort force (Fₑ) = 7 N
Force of resistance (Fᵣ) = 14 N
Distance from the box to the pivot (c) = 0.75 m
Distance from the pivot to the effort (y) =?
Clockwise moment = Fₑ × y
Anticlock wise moment = Fᵣ × c
Clockwise moment = Anticlock wise moment
Fₑ × y = Fᵣ × c
7 × y = 14 × 0.75
7 × y = 10.5
Divide both side by 7
y = 10.5 / 7
y = 1.5 m
Therefore, the distance from the pivot to the effort is 1.5 m
Answer:
42 grams
Explanation:
you multiply the value by 1000 to get your answer
Answer:
if the stars connect to a thing, then it describes.