Answer:
a) w = 25.1 rad/s, b) θ = 0.9599 rad
, c) α = 328.1 rad/s² d) t= 0.0765 s
Explanation: Let's work on this exercise with the equations of angular kinematics
a) The angular velocity is
w = 4.00 rev / s (2π rad / 1 rev)
w = 25.1 rad/s
b) let's reduce the angle of degrees to radians
θ = 55 ° (π rad / 180 °)
θ = 0.9599 rad
c) Let's use the initial angular velocity as the system part of the rest is zero
w² = w₀² + 2 α θ
α = w² / 2 θ
α = 25.1²/2 0.9599
α = 328.1 rad / s²
d)
w = w₀ + α t
t = w / α
t = 25.1 / 328.1
t= 0.0765 s
Answer:
Efficiency = 5%
Explanation:
Given that,
Supplies energy to the bulb = 100 J
Transferred energy by the bulb = 5 J
We need to find the efficiency of the bulb. It can be given by "

So, the efficiency of the bulb is 5%.
Because of the specific latent heat of fusion or vapourization of the substance