Compounds in alcoholic beverages that enhance flavor and appearance but may contribute to hangover symptoms are called congeners.
<h3>Alcoholic beverages:</h3>
Congeners are compounds that add to the flavor, smell, and appearance of most alcoholic beverages. These substances may make hangover symptoms worse. Because they contain fewer congeners than whiskey, brandy, and red wine, clear alcoholic beverages like gin and vodka have less of a hangover-inducing effect.
The impact of ethanol, or the alcohol in your drinks, is the primary contributor to a hangover. It is a poisonous substance that acts as a diuretic in the body, which causes you to urinate more frequently and increases the likelihood that you will become dehydrated. The incidence and intensity of hangovers are both increased by congeners, substances created during the digestion and maturation of alcohol.
Learn more about congeners here:
brainly.com/question/1837839
#SPJ4
For an object to sink in something, it's density has to be higher than the object it is in, so if it sinks in water the number has be higher than 1
And to float, and objects density has to be lower than that of the substance it is put in, so it has to be lower than 1.26
So between 1 and 1.26
The molarity of the hydrogen peroxide solution from the information supplied in the question is 12.26 M.
Co = 10pd/M
Where;
Co = concentration = ?
p = percent of the hydrogen peroxide = 30%
d = Density of hydrogen peroxide = 1.39 g/ml
M = Molar mass = 34 g/mol
Substituting values;
Co = 10 × 30 × 1.39/34
Co = 12.26 M
The molarity of the hydrogen peroxide solution from the information supplied in the question is 12.26 M.
Learn more: brainly.com/question/6111443
<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.