Answer:
t=67.7s
Explanation:
From this question we know that:
Vo = 6m/s
a = 1.8 m/s2
D = 1500m
And we also know that:
Replacing the known values:
Solving for t we get 2 possible answers:
t1 = -44.3s and t2 = 67.7s Since negative time represents an instant before the beginning of the movement, t1 is discarded. So, the final answer is:
t = 67.7s
Explanation:
It is given that,
Speed, v₁ = 7.7 m/s
We need to find the velocity after it has risen 1 meter above the lowest point. Let it is given by v₂. Using the conservation of energy as :




So, the velocity after it has risen 1 meter above the lowest point is 6.26 m/s. Hence, this is the required solution.
<span>Like most Earth materials, rocks are created and destroyed in cycles. The rock cycle is a model that describes the formation, breakdown, and reformation of a rock as a result of sedimentary, igneous, and metamorphic processes. </span><span>All rocks are made up of minerals. A mineral is defined as a naturally occurring, crystalline solid of definite chemical composition and a characteristic crystal structure. A rock is any naturally formed, nonliving, firm, and coherent aggregate mass of solid matter that constitutes part of a planet. i don't know if this is right but i hope it helps</span>
KE=1/2 m v^2
KE= .5 x 2kg x 15m/s to the 2nd power
KE=225 km/s
It’s solved by using a pretty standard formula for efficiency.