Answer:
486nm
Explanation:
in order for an electron to transit from one level to another, the wavelength emitted is given by Rydberg Equation which states that
![\frac{1}{wavelength}=R.[\frac{1}{n_{f}^{2} } -\frac{1}{n_{i}^{2} }] \\n_{f}=2\\n_{i}=4\\R=Rydberg constant =1.097*10^{7}m^{-1}\\subtitiute \\\frac{1}{wavelength}=1.097*10^{7}[\frac{1}{2^{2} } -\frac{1}{4^{2}}]\\\frac{1}{wavelength}= 1.097*10^{7}*0.1875\\\frac{1}{wavelength}= 2.06*10^{6}\\wavelength=4.86*10{-7}m\\wavelength= 486nm\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bwavelength%7D%3DR.%5B%5Cfrac%7B1%7D%7Bn_%7Bf%7D%5E%7B2%7D%20%7D%20-%5Cfrac%7B1%7D%7Bn_%7Bi%7D%5E%7B2%7D%20%7D%5D%20%5C%5Cn_%7Bf%7D%3D2%5C%5Cn_%7Bi%7D%3D4%5C%5CR%3DRydberg%20constant%20%3D1.097%2A10%5E%7B7%7Dm%5E%7B-1%7D%5C%5Csubtitiute%20%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D1.097%2A10%5E%7B7%7D%5B%5Cfrac%7B1%7D%7B2%5E%7B2%7D%20%7D%20-%5Cfrac%7B1%7D%7B4%5E%7B2%7D%7D%5D%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D%201.097%2A10%5E%7B7%7D%2A0.1875%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D%202.06%2A10%5E%7B6%7D%5C%5Cwavelength%3D4.86%2A10%7B-7%7Dm%5C%5Cwavelength%3D%20486nm%5C%5C)
Hence the photon must possess a wavelength of 486nm in order to send the electron to the n=4 state
Answer:
Explanation:
Given
mass of rock 
Elevation of Rock 
Distance traveled by rock with time

where, u=initial velocity
t=time
a=acceleration
here initial velocity is zero
when rock is 5 m from ground then it has traveled a distance of 5 m from top because total height is 10 m



velocity at this time



A will be the fastest and c the slowest because of the dip it has a is a straight line fastest way to get from a to b is a straight line b is the second fastest and d is last
Answer:
The speed it reaches the bottom is

Explanation:
Given:
, 
Using the conservation of energy theorem


, 
![m*g*h=\frac{1}{2}*m*(r*w)^2 +\frac{1}{2}*[\frac{1}{2} *m*r^2]*w^2](https://tex.z-dn.net/?f=m%2Ag%2Ah%3D%5Cfrac%7B1%7D%7B2%7D%2Am%2A%28r%2Aw%29%5E2%20%2B%5Cfrac%7B1%7D%7B2%7D%2A%5B%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Ar%5E2%5D%2Aw%5E2)


Solve to w'




