Answer:
The turning points are those instants, moments or situations that happen in an absolutely unexpected way, as a result of which your life changes ... and nothing is the same as before.
Hey there!
Here is your answer:
<u><em>The proper answer to this question is option C "</em></u><span><u><em>0.00349".</em></u>
Reason:
</span><span><u><em>1 L = 100 cL. Or 1 cL = 0.01 L</em></u>
</span><span><u><em>34.9 cL = 34.9 / 100 L = 0.349 L</em></u>
</span><span><u><em> 1 hL = 100 L. 0.349 L = 0.349 / 100 hL = 0.00349 hL</em></u>
<em>Therefore the answer is option C!</em>
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit</span>
Treatment water from the plant would affects the communities present in the downstream of the river.
Answer: Option (a)
<u>Explanation:</u>
Wastewater treatment plant is a process used to treat the water that flows from the rivers, streams, and lakes.This plant removes the dust, sand, sediments present in the river water.
When this treated water is released into the downriver stream, it affects the health of aquatic organisms present in that stream.Use of chemicals in treating the wastewater may cause genetic problems to the communities present in that region.
It also causes air pollution and more energy is needed for the treatment process and thus affects the ecosystem.
Answer:
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,
c) threshold energy
h f =Ф
Explanation:
It's photoelectric effect was fully explained by Einstein by the expression
Knox = h f - fi
Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) wavelength is related to frequency
λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.
c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy
h f =Ф