Answer:
680 g/m is the molar mass for the unknown, non electrolyte, compound.
Explanation:
Let's apply the formula for osmotic pressure
π = Molarity . R . T
T = T° absolute (in K)
R = Universal constant gases
π = Pressure
Molarity = mol/L
As units of R are L.atm/mol.K, we have to convert the mmHg to atm
760 mmHg is 1 atm
28.1 mmHg is (28.1 .1)/760 = 0.0369 atm
0.0369 atm = M . 0.082 L.atm/mol.K . 293K
(0.0369 atm / 0.082 mol.K/L.atm . 293K) = M
0.0015 mol/L = Molarity
This data means the mol of solute in 1L, but we have 100mL so
Molarity . volume = mol
0.0015 mol/L . 0.1L = 1.5x10⁻⁴ mole
The molar mass will be: 0.102g / 1.5x10⁻⁴ m = 680 g/m
Answer:
Average atomic mass = 15.86 amu.
Explanation:
Given data:
Number of atoms of Z-16.000 amu = 205
Number of atoms of Z-14.000 amu = 15
Average atomic mass = ?
Solution:
Total number of atoms = 205 + 15 = 220
Percentage of Z-16.000 = 205/220 ×100 = 93.18%
Percentage of Z-14.000 = 15/220 ×100 = 6.82 %
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (93.18×16.000)+(6.82×14.000) /100
Average atomic mass = 1490.88 + 95.48 / 100
Average atomic mass = 1586.36 / 100
Average atomic mass = 15.86 amu.
Answer:
Total energy consumed = 1,882.8 joules
Explanation:
Given:
Calories burned = 450 calories
Find:
Total energy consumed
Computation:
1 calorie = 4.184 joules
So,
450 calories = 4.184 × 450
450 calories = 1,882.8 joules
Total energy consumed = 1,882.8 joules
Jill and Susan violated safety procedures by not properly listening and/or reading over the instructions to know all the materials, steps, and equipment they need for the lab. Hope this helps!
Technically molar mass cannot be in grams, it is in grams per mole. and it refers to a specific number of molecules of a substance, therefore substances have different molar masses because the elements have different weights. for example having 10 water molecules would be a lot heavier than having 10 air molecules