The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
Answer:

Explanation:
From the question we are told that
Mass 
Height 
Generally the equation for velocity before impact is is is mathematically given by



Generally the equation for Kinetic Energy is is mathematically given by




The question is incomplete.
The distance between the Moon and Earth influences: 1) the attractive gravitational force between them, 2) the tides, 3) the eclipses, 4) the period of each full turn of the moon around the Earth.
Assuming the question refers to the gravitational attraction, we must use the fact that, as per, Newton's Universal Gravitaional Law, the attractive force between the two bodies is inversely related to the square distance that separates them.
Then, if the Moon were twice as far, the gravitational pull would be one fourth (1/4) of actual pull.
Answer:
a) Ep = 5886[J]; b) v = 14[m/s]; c) W = 5886[J]; d) F = 1763.4[N]
Explanation:
a)
The potential energy can be found using the following expression, we will take the ground level as the reference point where the potential energy is equal to zero.
![E_{p} =m*g*h\\where:\\m = mass = 60[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 10 [m]\\E_{p}=60*9.81*10\\E_{p}=5886[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%2060%5Bkg%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%20%3D%20elevation%20%3D%2010%20%5Bm%5D%5C%5CE_%7Bp%7D%3D60%2A9.81%2A10%5C%5CE_%7Bp%7D%3D5886%5BJ%5D)
b)
Since energy is conserved, that is, potential energy is transformed into kinetic energy, the moment the harpsichord touches water, all potential energy is transformed into kinetic energy.
![E_{p} = E_{k} \\5886 =0.5*m*v^{2} \\v = \sqrt{\frac{5886}{0.5*60} }\\v = 14[m/s]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20E_%7Bk%7D%20%5C%5C5886%20%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B5886%7D%7B0.5%2A60%7D%20%7D%5C%5Cv%20%3D%2014%5Bm%2Fs%5D)
c)
The work is equal to
W = 5886 [J]
d)
We need to use the following equation and find the deceleration of the diver at the moment when he stops his velocity is zero.
![v_{f} ^{2}= v_{o} ^{2}-2*a*d\\where:\\d = 2.5[m]\\v_{f}=0\\v_{o} =14[m/s]\\Therefore\\a = \frac{14^{2} }{2*2.5} \\a = 39.2[m/s^2]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%3D%20v_%7Bo%7D%20%5E%7B2%7D-2%2Aa%2Ad%5C%5Cwhere%3A%5C%5Cd%20%3D%202.5%5Bm%5D%5C%5Cv_%7Bf%7D%3D0%5C%5Cv_%7Bo%7D%20%3D14%5Bm%2Fs%5D%5C%5CTherefore%5C%5Ca%20%3D%20%5Cfrac%7B14%5E%7B2%7D%20%7D%7B2%2A2.5%7D%20%5C%5Ca%20%3D%2039.2%5Bm%2Fs%5E2%5D)
By performing a sum of forces equal to the product of mass by acceleration (newton's second law), we can find the force that acts to reduce the speed of the diver to zero.
m*g - F = m*a
F = m*a - m*g
F = (60*39.2) - (60*9.81)
F = 1763.4 [N]