1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
2 years ago
14

What was the maximum speed of the car in your experiment?

Physics
1 answer:
MA_775_DIABLO [31]2 years ago
7 0
The measurements used in the experiment is the amount of speed over time.

The measurement of speed is indicated along the “y” axis.

Upon viewing the graph, the highest point along the “y” axis shown is 25 m/s. This would be the maximum.

The maximum speed of the car would be 25 m/s.
You might be interested in
What is the speed of terminal velocity?
ivann1987 [24]
The so-called "terminal velocity" is the fastest that something can fall
through a fluid.  Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.

A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.

It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:

-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
4 0
3 years ago
A 100 Kg man is diving off a 50 meter cliff. What is his kinetic energy when he is 20 meters from the water?
iren2701 [21]

Answer:

K.E=29.403125J

Explanation:

From the question we are told that

Mass M=100

Height 50-20=30m

Generally the equation for velocity before impact is is is mathematically given by

v=\sqrt{2gh}

v=\sqrt{2*9.8*30}

v=24.25

Generally the equation for Kinetic Energy is is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*100*(24.25)^2\\

K.E=29403.125J

K.E=29.403125J

8 0
2 years ago
If the moon were twice as far from years as it is now the following would be true
zubka84 [21]
The question is incomplete.

The distance between the Moon and Earth influences: 1) the attractive gravitational force between them, 2) the tides, 3) the eclipses, 4) the period of each full turn of the moon around the Earth.

Assuming the question refers to the gravitational attraction, we must use the fact that, as per, Newton's Universal Gravitaional Law, the attractive force between the two bodies is inversely related to the square distance that separates them.

Then, if the Moon were twice as far, the gravitational pull would be one fourth (1/4) of actual pull.

7 0
3 years ago
The platform height for Olympic divers is 10 m. A 60 kg diver steps off the platform to begin his dive.
azamat

Answer:

a) Ep = 5886[J]; b) v = 14[m/s]; c)   W = 5886[J]; d) F = 1763.4[N]

Explanation:

a)

The potential energy can be found using the following expression, we will take the ground level as the reference point where the potential energy is equal to zero.

E_{p} =m*g*h\\where:\\m = mass = 60[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 10 [m]\\E_{p}=60*9.81*10\\E_{p}=5886[J]

b)

Since energy is conserved, that is, potential energy is transformed into kinetic energy, the moment the harpsichord touches water, all potential energy is transformed into kinetic energy.

E_{p} = E_{k} \\5886 =0.5*m*v^{2} \\v = \sqrt{\frac{5886}{0.5*60} }\\v = 14[m/s]

c)

The work is equal to

W = 5886 [J]

d)

We need to use the following equation and find the deceleration of the diver at the moment when he stops his velocity is zero.

v_{f} ^{2}= v_{o} ^{2}-2*a*d\\where:\\d = 2.5[m]\\v_{f}=0\\v_{o} =14[m/s]\\Therefore\\a = \frac{14^{2} }{2*2.5} \\a = 39.2[m/s^2]

By performing a sum of forces equal to the product of mass by acceleration (newton's second law), we can find the force that acts to reduce the speed of the diver to zero.

m*g - F = m*a

F = m*a - m*g

F = (60*39.2) - (60*9.81)

F = 1763.4 [N]

3 0
2 years ago
How much momentum does a 77 kg football player have if he is running with a speed of 4 m/s
worty [1.4K]

Answer:

308 N-s

Explanation:

Momentum is given by

P= mv

P= 77 x 4

P= 308

4 0
2 years ago
Other questions:
  • To distinguish between properties of the two major types of supernovae: massive star supernovae and white dwarf supernovae. all
    9·1 answer
  • When is a body said to be at res
    6·1 answer
  • What is the difference between work input and work output
    5·1 answer
  • The mini-refrigerator fire was most likely caused by what type of wiring?
    14·1 answer
  • How long does it take a plane that is traveling at 350 km/h to travel 1750 km?
    9·1 answer
  • new york, Vermont, Massachusetts are specifically what region of the united states? and what two wind directions do you combine?
    14·1 answer
  • You are sitting 3 m away from you friend who is watching a cartoon on his phone. How will the sound itensity change if your frie
    6·1 answer
  • A high school physics student with a mass of 68.18 KG is sitting in a seat reading this question the magnitude of the force with
    7·1 answer
  • What is The splitting of white light into its component colours is termed as?
    10·1 answer
  • Shondra takes notes in class. I. Electromagnetic Waves II. The ability to work - Has many forms - Mechanical III. Potential ener
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!