Answer:
The surface tension is 0.0318 N/m and is sufficiently less than the surface tension of the water.
Solution:
As per the question:
Radius of an alveolus, R = 
Gauge Pressure inside, 
Blood Pressure outside, 
Now,
Change in pressure, 
Since the alveolus is considered to be a spherical shell
The surface tension can be calculated as:


And we know that the surface tension of water is 72.8 mN/m
Thus the surface tension of the alveolus is much lesser as compared to the surface tension of water.
Answer:

Explanation:
Given that,
The mass of a Hubble Space Telescope, 
It orbits the Earth at an altitude of 
We need to find the potential energy the telescope at this location. The formula for potential energy is given by :

Where
is the mass of Earth
Put all the values,

So, the potential energy of the telescope is
.
<span>
At the Earth's surface, warm air expands and rises, creating
what is known as an area of low pressure.
Cold air is dense and sinks to the surface to create what is
known as an area of high pressure.</span>