Answer:
74.9%.
Explanation:
Relative atomic mass data from a modern periodic table:
- Ca: 40.078;
- C: 12.011;
- O: 15.999.
What's the <em>theoretical</em> yield of this reaction?
In other words, what's the mass of the CO₂ that should come out of heating 40.1 grams of CaCO₃?
Molar mass of CaCO₃:
.
Number of moles of CaCO₃ available:
.
Look at the chemical equation. The coefficient in front of both CaCO₃ and CO₂ is one. Decomposing every mole of CaCO₃ should produce one mole of CO₂.
.
Molar mass of CO₂:
.
Mass of the 0.400655 moles of
expected for the 40.1 grams of CaCO₃:
.
What's the <em>percentage</em> yield of this reaction?
.
<span>Oxidation is the loss of electrons and corresponds to an increase in oxidation state. The reduction is the gain of electrons and corresponds to a decrease in oxidation state. Balancing redox reactions can be more complicated than balancing other types of reactions because both the mass and charge must be balanced. Redox reactions occurring in aqueous solutions can be balanced by using a special procedure called the half-reaction method of balancing. In this procedure, the overall equation is broken down into two half-reactions: one for oxidation and the other for reduction. The half-reactions are balanced individually and then added together so that the number of electrons generated in the oxidation half-reaction is the same as the number of electrons consumed in the reduction half-reaction.</span>
Answer:
Please, see attached two figures:
- The first figure shows the solutility curves for several soluts in water, which is needed to answer the question.
- The second figure shows the reading of the solutiblity of NH₄Cl at a temperature of 60°C.
Explanation:
The red arrow on the second attachement shows how you must go vertically from the temperature of 60ºC on the horizontal axis, up to intersecting curve for the <em>solubility</em> of <em>NH₄Cl.</em>
From there, you must move horizontally to the left (green arrow) to reach the vertical axis and read the solubility: the reading is about in the middle of the marks for 50 and 60 grams of solute per 100 grams of water: that is 55 grams of grams of solute per 100 grams of water.
Assuming density 1.0 g/mol for water, 10 mL of water is:
Thus, the solutibily is:

2 C2H6 + 7 O2 -> 4CO2 + 6 H2O
<span>so the products are carbondioxide & water vapour</span>
Answer:
A: plants give off water vapor as a waste product as they process energy
Explanation:
Evapotranspiration in plants is defined as the process whereby water is evaporated from its leaves through transpiration during the process of photosynthesis. Different factors like wind, humidity, temperature and availability of water could make it vary.
Comparing all the options, to this definition, the correct answer is Option A.