1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sati [7]
2 years ago
5

The center-seeking change in velocity of an object moving in a circle is:

Physics
2 answers:
NeTakaya2 years ago
5 0

The center-seeking change in velocity of an object moving in a circle is the centripetal acceleration.

So, by Newton's laws, we know that an object moving with a given velocity will remain in constant motion with a constant velocity until we apply an acceleration.

So we define acceleration as the rate of change of the velocity, also remember that velocity is a vector (has magnitude and direction), so, if there is a change the direction of the velocity, we have an acceleration that causes that.

In circular motion, the velocity vector is always perpendicular to the radius of the circle, and it can only be possible if the velocity direction is changing constantly. This will happen because of something called centripetal acceleration.

This acceleration points radially inwards (to the center of the circle) so is also perpendicular to the velocity of the moving object, and this is what causes the constant change in the direction of the velocity of the moving object.

Just to give an example, if you have a string with a mass on one end, and with your hand, you rotate the mass (from the string), the tension of the string would be the centripetal acceleration.

If you want to learn more about circular motion, you can read:

brainly.com/question/2285236

Helen [10]2 years ago
4 0

Answer:

centripetal acceleration.

You might be interested in
while standing on the sidewalk facing the road, you see a bicyclist passing by toward your right. in the reference frame of the
cricket20 [7]

Answer:

Consider frames X and Y:

If X sees Y moving to his right then Y must see X moving to his right.

If this is not true then one can choose one frame over the other ( a favored frame and this is not allowed)

7 0
3 years ago
Does parallax affect the precision of a measurement that you make
Paul [167]
Yes, parallax affects the precision of a measurement that you make. It introduces an error in the order of the parallax. It will cause the measurement to be different from the real answer. Hope this answers the question. Have a nice day.
8 0
3 years ago
Read 2 more answers
How do light waves differ from sound waves?
insens350 [35]

Answer:

Light waves are electromagnetic waves while sound waves are mechanical waves. :)

5 0
2 years ago
Read 2 more answers
A ray of light incident in air strikes a rectangular glass block of refractive index 1.50, at an angle of incidence of 45°. Calc
balandron [24]

Answer:

Approximately 28^{\circ}.

Explanation:

The refractive index of the air n_{\text{air}} is approximately 1.00.

Let n_\text{glass} denote the refractive index of the glass block, and let \theta _{\text{glass}} denote the angle of refraction in the glass. Let \theta_\text{air} denote the angle at which the light enters the glass block from the air.

By Snell's Law:

n_{\text{glass}} \, \sin(\theta_{\text{glass}}) = n_{\text{air}} \, \sin(\theta_{\text{air}}).

Rearrange the Snell's Law equation to obtain:

\begin{aligned} \sin(\theta_{\text{glass}}) &= \frac{n_{\text{air}} \, \sin(\theta_{\text{air}})}{n_{\text{glass}}} \\ &= \frac{(1.00)\, (\sin(45^{\circ}))}{1.50} \\ &\approx 0.471\end{aligned}.

Hence:

\begin{aligned} \theta_{\text{glass}} &= \arcsin (0.471) \approx 28^{\circ}\end{aligned}.

In other words, the angle of refraction in the glass would be approximately 28^{\circ}.

7 0
2 years ago
Which would BEST describes what occurs when a ball is thrown against a wall? A) The ball will not bounce off the wall. B) The ba
oee [108]

Answer:

D) The ball exerts a force on the wall and the wall exerts a force back.

Explanation:

Newton's third law of motion states that:

"When an object A exerts a force on another object B, then object B exerts an equal and opposite force on object A"

In this problem, we can identify (for instance) object A with tha ball and object B with the wall. Therefore, if we apply Newton's third law, we get:

The ball (object A) exerts a force on the wall (object B), therefore the wall (object B) exerts an equal and opposite force on the ball (object A). So, option D is the correct one.

3 0
4 years ago
Read 2 more answers
Other questions:
  • The energy band gap of GaAs is 1.4 eV. Calculate the optimum wavelength of light for
    9·1 answer
  • Determine for which class of lever the output force is always greater than the input force. for which class is the output force
    14·2 answers
  • A window washer stands on a scaffolding 30m above the ground. If he did 23,520J of work to reach the scaffolding, what is his ma
    11·1 answer
  • Did you think about this over Christmas? I did (-: Before Christmas a 65kg student consumes 2500 Cal each day and stays at the s
    9·1 answer
  • What is terminal speed? When a skydiver has reached terminal speed, what is the are resistance equal to? What is the skydiver’s
    6·2 answers
  • which scenario involves the most work? a.pulling a box with a force of 127 newtons across the floor for 8 meters b.holding a mas
    5·1 answer
  • Which characteristic is used to measure the amount of light radiated by a star?
    5·2 answers
  • A 25-newton horizontal force northward and a 35-
    7·1 answer
  • Country and country produce the consumption goods and capital goods and currently have identical production curvesthey also have
    15·1 answer
  • the force that gravitation exerts upon a body, equal to the mass of the body times the local acceleration of gravity
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!