Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081
Answer:
The tension in the rope is 41.38 N.
Explanation:
Given that,
Mass of bucket of water = 14.0 kg
Diameter of cylinder = 0.260 m
Mass of cylinder = 12.1 kg
Distance = 10.7 m
Suppose we need to find that,
What is the tension in the rope while the bucket is falling
We need to calculate the acceleration
Using relation of torque


Where, I = moment of inertia
= angular acceleration

...(I)
Here, F = tension
The force is
...(II)
Where, F = tension
a = acceleration
From equation (I) and (II)


Put the value into the formula


We need to calculate the tension in the rope
Using equation (I)

Put the value into the formula


Hence, The tension in the rope is 41.38 N.
Answer:
176.4 meters
Explanation:
The first equation is for average velocity. The other three are the constant acceleration equations you'll need to know.
v = at + v₀
v² = v₀² + 2a(x − x₀)
x = x₀ + v₀ t + ½ at²
x is the final position
x₀ is the initial position
v is the final velocity
v₀ is the initial velocity
t is time
a is acceleration
Notice that the first equation is independent of position.
The second equation is independent of time.
The third equation is independent of final velocity.
So knowing which information you <em>don't</em> have will point you to which equation you should use.
Let's begin:
"Which one would be best to find the distance the object fell from free-fall if it fell for six seconds, assuming if fell in the absence of air resistance and it still hasn't hit the ground? Solve this problem and show all steps of work."
We want to find the distance (change in position). We're given the time (t = 6 s) and we're given the acceleration (free fall without air resistance, so a = -9.8 m/s²).
We aren't given the final velocity, so the equation we should use is the third one:
y = y₀ + v₀ t + ½ at²
Unfortunately, we aren't told the initial velocity, but if we assume that the object starts at rest, then v₀ = 0 m/s. Substituting all values:
y = y₀ + (0 m/s) (6 s) + ½ (-9.8 m/s²) (6 s)²
y − y₀ = -176.4 m
The displacement is -176.4 m. Distance is the magnitude of displacement, so we can say the object fell 176.4 meters.
Answer:
A) 0.5 kg
Explanation:
Q = mCΔT
where Q is energy,
m is mass,
C is specific heat capacity,
and ΔT is temperature change.
Solving for ΔT:
ΔT = Q / (mC)
ΔT is the largest when m is the smallest.