Well first of all, a planet doesn't have a semimajor axis, although it's orbit does.
In an orbit with a smaller semimajor axis, the planet moves faster, and its orbital period is shorter.
That's why the International Space Station circles the Earth in less time than the Moon does.
To solve this problem it is necessary to apply the concepts related to the capacitance in the disks, the difference of the potential and the load in the disc.
The capacitance can be expressed in terms of the Area, the permeability constant and the diameter:

Where,
= Permeability constant
A = Cross-sectional Area
d = Diameter
Potential difference between the two disks,
V = Ed
Where,
E = Electric field
d = diameter
Q = Charge on the disk equal to 
Through the value found and the expression given for capacitance and potential, we can define the electric charge as





Re-arranging the equation to find the diameter of the disks, the equation will be:

Replacing,


Therefore the diameter of the disks is 0.03m
Answer:
The value is 
Explanation:
From the question we are told that
The weight of the block is 
The dimension of the block is 
Generally two atmosphere is equivalent to

Generally 1 atm = 
The area of the block would be evaluated using width and height because we need for the smaller surface to be in contact with the ground in order to maximize the pressure and minimize number of blocks
So

=> 
Generally the force due to this blocks is mathematically represented as

Here N is the number of blocks
So

=> 