Answer:
57,42 KJ
Explanation:
By a isobaric proces, the expresion for the works in the jpg adjunt. Then:
W = Pa(Vb - Va) = Pa*Vb - Pa*Va ---(1)
By the ideal gases law: PV=RTn
Then, in (1): (remember Pa = Pb)
W = R*Tb*n - R*T*an = R*n*(Tb - Ta) --- (2)
Since we have 1 Kg air: How much is this in moles?
From bibliography: 28.96 g/mol
Then, in 1 Kg (1000 g) there are:
n = 34,53 mol
Finally, in (2):
W = (8,3144 J/K.mol)*(34,53 mol)*(500K - 300K) = 51 419,9 J ≈ 57,42 KJ
Answer: 1.22 m
Explanation:
The equation of motion in this situation is:
(1)
Where:
is the final height of the ball
is the initial height of the ball
is the vertical component of the initial velocity (assuming the ball was thrown vertically and there is no horizontal velocity)
is the time at which the ball lands
is the acceleration due gravity
So, with these conditions the equation is rewritten as:
(2)
(3)
Finally:
